On purely tree-colorable planar graphs

Jin $\mathrm{Xu}^{\mathrm{a}, \mathrm{b}, *}$, Zepeng $\mathrm{Li}^{\mathrm{a}, \mathrm{b}}$, Enqiang Zhu ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ School of electronics and computer science, Peking University, Beijing 100871, China
${ }^{\mathrm{b}}$ Key Laboratory of High Confidence Software Technologies (Peking University), Beijing 100871, China

A R T I C L E I N F O

Article history:

Received 14 November 2014
Received in revised form 13 March 2016
Accepted 24 March 2016
Available online 29 March 2016
Communicated by X . Wu

Keywords:

Combinatorial problems
Maximal planar graph (MPG)
Tree- k-coloring
Purely tree-k-colorable
Dumbbell-maximal planar graph
(dumbbell-MPG)

Abstract

A tree-k-coloring of a graph G is a k-coloring of G such that the subgraph induced by the union of any two color classes is a tree. G is purely tree- k-colorable if the chromatic number of G is k and any k-coloring of G is a tree- k-coloring. Xu [16] conjectured that there exist only two purely tree-4-colorable 4-connected maximal planar graphs. In this paper, we construct an infinite family of purely tree-colorable 4-connected maximal planar graphs, called dumbbell-maximal planar graphs, which disprove Xu's conjecture. Moreover, we give the enumeration of dumbbell-maximal planar graphs and propose a conjecture on such graphs. It turns out that the conjecture implies naturally the uniquely 4 -colorable planar graph conjecture.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple and undirected, and we follow [1] for the terminologies and notations not defined here. Given a graph G, we use $V(G), E(G)$ and $\delta(G)$ (or simply V, E and δ if the graph is clear from the context) to denote the vertex set, the edge set and the minimum degree of G, respectively. A subgraph H of G is called an induced subgraph if for any $u, v \in V(H)$, u, v are adjacent in G if and only if they are adjacent in H; we also say H is a subgraph induced by $V(H)$ in the traditional sense, written as $H=G[V(H)]$. A k-path (or k-cycle) is a path (or cycle) of length k. An n-wheel is a graph on $n+1$ vertices, which is constructed by an n-cycle and a more vertex adjacent to each vertex of the cycle.

A planar graph is a graph that can be drawn in the plane so that its edges intersect only at their ends. A graph is called a maximal planar graph (MPG) or a triangulation if

[^0]it is planar but adding any edge (on the given vertex set) would destroy that property. If an MPG can be reduced into the tetrahedral graph by deleting a 3-vertex and its incident edges, repeatedly, then we call this graph a recursive MPG, where a k-vertex of a graph G is a vertex with degree k. A cycle C of a planar graph is separating if there exist vertices in the interior and the exterior of C.

A k-coloring of G is an assignment of k colors to $V(G)$ such that no two adjacent vertices are assigned the same color. Naturally, a k-coloring can be viewed as a partition $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ of V, where V_{i} denotes the set of vertices assigned color i, and is called a color class of the coloring for any $i=1,2, \cdots, k$. A graph G is k-colorable if it admits a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k such that G is k-colorable. A graph G is uniquely k-colorable if $\chi(G)=k$ and G has only one k-coloring up to permutation of the colors.

The uniquely coloring problem of graphs was first proposed by Cartwright and Harary [2] and Gleason and Cartwright [8]. In 1973, Greenwell and Kronk [11] studied the uniquely colorable graphs in terms of the edge coloring, and proposed a conjecture as follows.

Conjecture 1.1. If G is a uniquely 3-edge-colorable cubic graph, then G is a planar graph that contains a triangle.

In 1975, Fiorini [3] independently studied uniquely edge colorable graphs, and obtained some similar results to the ones of Greenwell and Kronk. After that, many scholars discussed this class of graphs, such as Thomason [14,15], Fiorini and Wilson [4,5], Zhang [18], and Goldwasser and Zhang [9,10]. In 1977, Fiorini and Wilson [4] put forward the following conjecture on the basis of Conjecture 1.1.

Conjecture 1.2 (Uniquely 4-colorable planar graph conjecture: edge version). Every uniquely 3-edge-colorable cubic planar graph contains a triangle.

Fisk [6] independently proposed a dual version of Conjecture 1.2 , which characterizes the structure of uniquely 4-colorable planar graphs.

Conjecture 1.3 (Uniquely 4-colorable planar graph conjecture: vertex version). A planar graph G is uniquely 4 -colorable if and only if G can be obtained from K_{4} by embedding a vertex of degree 3 in some triangular face continuously, that is, G is a recursive MPG.

Goldwasser and Zhang [10] proved that every counterexample to Conjecture 1.3 is 5-connected. Fowler [7] investigated in detail the uniquely 4 -colorable planar graphs by using a method similar to the proof of the 4-Color Theorem [13].

For a k-coloring f of a graph G, if the subgraph induced by the union of any two color classes under f is a tree, then we call f a tree-k-coloring of G. If the chromatic number of G is k and any k-coloring of G is a tree- k-coloring, then G is called purely tree- k-colorable. Note that a tree- k-coloring is also an acyclic k-coloring, which was introduced by Grunbaum [17].

By definition, it can be seen that each purely tree-k-colorable graph is connected. Moreover, we have the following Lemma 1.4, which is straightforward to prove.

Lemma 1.4. If G is a purely tree- k-colorable graph on n vertices, then
$|E(G)|=\frac{1}{2}(k-1)(2 n-k)$.
Conversely, if G is uniquely k-colorable and $|E(G)|=$ $\frac{1}{2}(k-1)(2 n-k)$, then for any k-coloring of G, the subgraph induced by the union of any two color classes is a tree. So we can obtain the following theorem.

Theorem 1.5. If G is uniquely k-colorable and $|E(G)|=\frac{1}{2}(k-$ $1)(2 n-k)$, then G is purely tree- k-colorable.

In this paper, we mainly consider the purely tree-4-colorable planar graphs. It is well known that the maximum number of edges in a planar graph with $n \geq 3$ is $3 n-6$, in which case the planar graph is maximal. Using this fact,

Fig. 1. Two purely tree-4-colorable MPGs J^{9} and I^{12}.
together with Lemma 1.4, we can conclude the following result.

Corollary 1.6. Every purely tree-4-colorable planar graph is a maximal planar graph.

In 2005, Xu [16] found two purely tree-4-colorable 4-connected maximal planar graphs (MPGs) J^{9} and I^{12} (icosahedron) shown in Figs. 1(a) and (b), and conjectured that there does not exist any purely tree-4-colorable MPG except for J^{9} and I^{12}. In this paper, we construct an infinite family of purely tree-4-colorable 4-connected MPGs, called dumbbell-maximal planar graphs (dumbbell-MPGs), which disprove Xu's conjecture. Moreover, we conjecture that a 4 -connected MPG G is purely tree-4-colorable if and only if G is either the icosahedron or a dumbbell-MPG, which implies naturally the uniquely 4 -colorable planar graph conjecture.

2. Purely tree-4-colorable planar graphs

2.1. Construction

A dumbbell is a graph consisting of two triangles $\Delta v_{1} v_{2} u$ and $\Delta u v_{3} v_{4}$ with exactly one common vertex u (see Fig. 2(a)). Obviously, a 4 -wheel contains exactly two dumbbells. Without special assertion, dumbbells considered in this paper are ones contained in a 4 -wheel.

The dumbbell transformation is defined as follows. For a given dumbbell $X=\Delta v_{1} v_{2} u \bigcup \Delta u v_{3} v_{4}$, first, add two 3-vertices x_{1} and x_{2} on the two triangular faces of X, respectively. Then split the vertex u into two vertices u and u^{\prime}, and split the edges $x u$ and $u y$ into two edges $x u, x u^{\prime}$ and $u y, u^{\prime} y$ respectively. Hence, the vertices x, u^{\prime}, y, u form a 4 -cycle. Then add a new vertex v in this cycle adjacent to every vertex of the cycle. The process is shown in Figs. 2(a)-(c).

It is easy to prove the following theorem.

Theorem 2.1. Let G be an MPG with a 4 -wheel W_{4}. Then the graphs obtained from G by implementing the dumbbell transformations on two dumbbells of W_{4} are isomorphic.

A graph G is a dumbbell-MPG if either G is isomorphic to J^{9}, or G can be obtained from a dumbbell-MPG by implementing a dumbbell transformation. We denote by J^{n} a dumbbell-MPG on n vertices. For instance, Fig. 3(c) is a dumbbell-MPG on 13 vertices, which can be obtained

https://daneshyari.com/en/article/427379

Download Persian Version:
https://daneshyari.com/article/427379

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jxu@pku.edu.cn (J. Xu), lizepeng@pku.edu.cn (Z. Li), zhuenqiang@pku.edu.cn (E. Zhu).

