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A tree-k-coloring of a graph G is a k-coloring of G such that the subgraph induced by
the union of any two color classes is a tree. G is purely tree-k-colorable if the chromatic
number of G is k and any k-coloring of G is a tree-k-coloring. Xu [16] conjectured that
there exist only two purely tree-4-colorable 4-connected maximal planar graphs. In this
paper, we construct an infinite family of purely tree-colorable 4-connected maximal planar

graphs, called dumbbell-maximal planar graphs, which disprove Xu’s conjecture. Moreover,
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we give the enumeration of dumbbell-maximal planar graphs and propose a conjecture
on such graphs. It turns out that the conjecture implies naturally the uniquely 4-colorable
planar graph conjecture.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple
and undirected, and we follow [1] for the terminologies
and notations not defined here. Given a graph G, we use
V(G), E(G) and §(G) (or simply V, E and § if the graph
is clear from the context) to denote the vertex set, the edge
set and the minimum degree of G, respectively. A subgraph
H of G is called an induced subgraph if for any u, v € V(H),
u, v are adjacent in G if and only if they are adjacent in H;
we also say H is a subgraph induced by V (H) in the tradi-
tional sense, written as H = G[V (H)]. A k-path (or k-cycle)
is a path (or cycle) of length k. An n-wheel is a graph on
n + 1 vertices, which is constructed by an n-cycle and a
more vertex adjacent to each vertex of the cycle.

A planar graph is a graph that can be drawn in the plane
so that its edges intersect only at their ends. A graph is
called a maximal planar graph (MPG) or a triangulation if
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it is planar but adding any edge (on the given vertex set)
would destroy that property. If an MPG can be reduced
into the tetrahedral graph by deleting a 3-vertex and its
incident edges, repeatedly, then we call this graph a recur-
sive MPG, where a k-vertex of a graph G is a vertex with
degree k. A cycle C of a planar graph is separating if there
exist vertices in the interior and the exterior of C.

A k-coloring of G is an assignment of k colors to V(G)
such that no two adjacent vertices are assigned the same
color. Naturally, a k-coloring can be viewed as a partition
{V1,Va,---, Vi} of V, where V; denotes the set of vertices
assigned color i, and is called a color class of the coloring
forany i=1,2,---,k. A graph G is k-colorable if it admits
a k-coloring. The chromatic number of G, denoted by x (G),
is the minimum number k such that G is k-colorable.
A graph G is uniquely k-colorable if x(G) =k and G has
only one k-coloring up to permutation of the colors.

The uniquely coloring problem of graphs was first pro-
posed by Cartwright and Harary [2] and Gleason and
Cartwright [8]. In 1973, Greenwell and Kronk [11] studied
the uniquely colorable graphs in terms of the edge color-
ing, and proposed a conjecture as follows.
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Conjecture 1.1. If G is a uniquely 3-edge-colorable cubic graph,
then G is a planar graph that contains a triangle.

In 1975, Fiorini [3] independently studied uniquely
edge colorable graphs, and obtained some similar results to
the ones of Greenwell and Kronk. After that, many scholars
discussed this class of graphs, such as Thomason [14,15],
Fiorini and Wilson [4,5], Zhang [18], and Goldwasser and
Zhang [9,10]. In 1977, Fiorini and Wilson [4] put forward
the following conjecture on the basis of Conjecture 1.1.

Conjecture 1.2 (Uniquely 4-colorable planar graph conjecture:
edge version). Every uniquely 3-edge-colorable cubic planar
graph contains a triangle.

Fisk [6] independently proposed a dual version of Con-
jecture 1.2, which characterizes the structure of uniquely
4-colorable planar graphs.

Conjecture 1.3 (Uniquely 4-colorable planar graph conjecture:
vertex version). A planar graph G is uniquely 4-colorable if and
only if G can be obtained from K4 by embedding a vertex of
degree 3 in some triangular face continuously, that is, G is a
recursive MPG.

Goldwasser and Zhang [10] proved that every coun-
terexample to Conjecture 1.3 is 5-connected. Fowler [7] in-
vestigated in detail the uniquely 4-colorable planar graphs
by using a method similar to the proof of the 4-Color The-
orem [13].

For a k-coloring f of a graph G, if the subgraph in-
duced by the union of any two color classes under f
is a tree, then we call f a tree-k-coloring of G. If the
chromatic number of G is k and any k-coloring of G is
a tree-k-coloring, then G is called purely tree-k-colorable.
Note that a tree-k-coloring is also an acyclic k-coloring,
which was introduced by Grunbaum [17].

By definition, it can be seen that each purely tree-k-col-
orable graph is connected. Moreover, we have the follow-
ing Lemma 1.4, which is straightforward to prove.

Lemma 1.4. If G is a purely tree-k-colorable graph on n vertices,
then

1
[E(G)| = E(k_ 1)(2n —k).

Conversely, if G is uniquely k-colorable and |E(G)| =
%(k— 1)(2n —k), then for any k-coloring of G, the subgraph
induced by the union of any two color classes is a tree. So
we can obtain the following theorem.

Theorem 1.5. If G is uniquely k-colorable and |E(G)| = %(k —
1)(2n — k), then G is purely tree-k-colorable.

In this paper, we mainly consider the purely tree-4-col-
orable planar graphs. It is well known that the maximum
number of edges in a planar graph with n > 3 is 3n — 6,
in which case the planar graph is maximal. Using this fact,

(@) (b)

Fig. 1. Two purely tree-4-colorable MPGs J° and ['2.

together with Lemma 1.4, we can conclude the following
result.

Corollary 1.6. Every purely tree-4-colorable planar graph is a
maximal planar graph.

In 2005, Xu [16] found two purely tree-4-colorable
4-connected maximal planar graphs (MPGs) J° and I!2
(icosahedron) shown in Figs. 1(a) and (b), and conjectured
that there does not exist any purely tree-4-colorable MPG
except for J° and I'. In this paper, we construct an in-
finite family of purely tree-4-colorable 4-connected MPGs,
called dumbbell-maximal planar graphs (dumbbell-MPGs),
which disprove Xu’'s conjecture. Moreover, we conjecture
that a 4-connected MPG G is purely tree-4-colorable if and
only if G is either the icosahedron or a dumbbell-MPG,
which implies naturally the uniquely 4-colorable planar
graph conjecture.

2. Purely tree-4-colorable planar graphs
2.1. Construction

A dumbbell is a graph consisting of two triangles
Avivau and Auvsvg with exactly one common vertex u
(see Fig. 2(a)). Obviously, a 4-wheel contains exactly two
dumbbells. Without special assertion, dumbbells consid-
ered in this paper are ones contained in a 4-wheel.

The dumbbell transformation is defined as follows. For
a given dumbbell X = AvqvaulJAuvsvy, first, add two
3-vertices x; and x; on the two triangular faces of X,
respectively. Then split the vertex u into two vertices
u and u/, and split the edges xu and uy into two
edges xu, xu’ and uy, u’y respectively. Hence, the vertices
x,u’, y,u form a 4-cycle. Then add a new vertex v in this
cycle adjacent to every vertex of the cycle. The process is
shown in Figs. 2(a)-(c).

It is easy to prove the following theorem.

Theorem 2.1. Let G be an MPG with a 4-wheel W 4. Then the
graphs obtained from G by implementing the dumbbell trans-
formations on two dumbbells of W 4 are isomorphic.

A graph G is a dumbbell-MPG if either G is isomorphic
to J°, or G can be obtained from a dumbbell-MPG by im-
plementing a dumbbell transformation. We denote by J"
a dumbbell-MPG on n vertices. For instance, Fig. 3(c) is
a dumbbell-MPG on 13 vertices, which can be obtained
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