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We provide an attack to (EC)DSA digital signature built upon Coppersmith’s method. We 
prove that, if a, k are the private and ephemeral key, respectively, of the (EC)DSA scheme 
and (k−1mod q)2a < 0.262 · q1.157, then we can efficiently find a.
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1. Introduction—statement of results

In the present paper we study Digital Signature Algo-
rithm, DSA, and its elliptic curve variant, ECDSA [7]. Both 
are based on ElGamal signatures [8]. In these schemes Al-
ice, the signer, randomly chooses a private key a from 
a public finite group G , with |G| = p, for some large 
prime p. Usually G is the finite group of integers mod-
ulo p or the group defined by the points of an elliptic 
curve over a finite field. Then, she publishes an element 
g ∈ G and R = ga , for some a randomly chosen from the 
set {1, 2, . . . , q − 1}, where q is a prime at least 160-bits, 
such that q|p − 1. Also, she considers an ephemeral key 
k randomly chosen from the set {2, 3, . . . , q − 1}. Further-
more, Alice chooses an integer, say s, by solving a linear 
modular equation f s(a, k) ≡ 0 (mod q), between the se-
cret key a and the ephemeral key k. The purpose of an 
attacker is to find either a or k, the knowledge of one leads 
to the discovery of the other. These protocols are based on 
the difficulty of the Discrete Logarithm Problem (DLP). To 
attack these digital signatures, someone may try to solve 
DLP. Another large class of attacks is based on lattices, see 
[4,11].

E-mail address: drazioti@csd.auth.gr.

For the DLP (but not its elliptic curve variant), the best 
algorithms have subexponential running time [1,10]. Our 
attack is based on lattices. We study the modular equation 
f s(a, k) ≡ 0 (mod q), which in the case of (EC)DSA has the 
form,

ks − ar ≡ h(m) (mod q), (1)

where h : G → Zq is a hash function which is a pub-
lic knowledge, r = (gkmod p)mod q and s satisfies equa-
tion (1). Furthermore, (r, s) is the signature of a mes-
sage m.

Also, the first attack in (EC)DSA, using Coppersmith’s 
method [5], was given in [3]. The authors managed to 
prove that, if ak < q0.957 (with q 160-bits), then there is an 
efficient algorithm which provides a. They applied Copper-
smith’s method to the polynomial given by equation (1). 
Coppersmith’s method has polynomial running time since 
it uses LLL algorithm.

Before we state our results, we shall define the fol-
lowing notation. Let n be an integer and gcd(q, n) = 1. 
Then [n−1]q denote the reminder of an integer in the class 
n−1(mod q) divided by q. In [13] Coppersmith’s method 
was applied to a quadratic polynomial. Furthermore, as-
suming that we can factor integers less than 160-bits and 
if [k−1]2

qa < q/63/2 ≈ 0.06 · q, then the author found a in 
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Table 1
In the second column we calculated �log2(q1.157Y −1.26 ×
0.262)� − �log2 (qY −16−3/2)�, with q 160 bits. Thus, we 
get the advantage (in bits) for X2, of our method com-
pared with [13].

Bits (Y) Advantage (in bits)

100 1
93 3
89 4
85 5
77 7
73 8
69 9
66 10

polynomial time (assuming q has 160-bits). In this paper 
we shall improve this result. If a has less than 101 bits, we 
show that greater values of [k−1]q can be used. In our ap-
proach we use a lattice of Boneh–Durfee type [6]. Note that 
our method does not depend on the hypothesis of factor-
ing 160 bits integers, so we allow more than 160-bits for 
the prime q.

We shall use a lattice such that each row corresponds 
to a bivariate polynomial, H(x, y), with H([k−1]q, a) ∈ Z. 
Having two short lattice vectors, we get two polynomials 
having as a common root ([k−1]q, a). Then, we compute 
the private key a. To implement our attack we use the fol-
lowing heuristic assumption. We assume that H1(x, y) and 
H2(x, y) are algebraically independent polynomials. So taking 
the resultant of these two polynomials (with respect either 
x or y) we get a non-constant polynomial of one variable. 
The heuristic is supported by many examples (for a discus-
sion see also [6, section 7.3]).

Furthermore, we use the following experimental fact.

FACT 1. In random lattices with dimension ≤ 35, LLL behaves as 
a SVP-oracle.

That is will find a shortest vector of the lattice (SVP: 
Shortest Vector Problem). This was confirmed by many ex-
periments [9]. We prove the following proposition.

Proposition 1.1. Let a, k be the private and an ephemeral 
key of the (EC)DSA, respectively and X, Y ∈ Z>0 such that 
[k−1]q < X, a < Y . Assuming FACT 1 and the heuristic, if 
X2Y 1.26 < 0.262 · q1.157 , then we can efficiently find the pri-
vate key a.

For Y less than 101 bits we improve the result of [13]. 
To see this we constructed Table 1.

Finally, we remark that in the proof of Proposition 1.1
we assumed that the Gaussian heuristic holds in our lat-
tices (see also [2]). Gaussian heuristic predicts the fol-
lowing bound for the first successive minima λ1(L) ≈
(

√
w

2πe )1/2 det L1/w = Gauss(L), where L is a full rank lattice 
(i.e. is defined by a rectangular matrix) of volume det L and 
with dimension w . We have checked this heuristic exper-
imentally. We ran 1000 random instances of our lattices 
and we got |λ1(L) − Gauss(L)| < 10−2.

We shall now state our theorem.

Theorem 1.2. Let a, k be the private and an ephemeral key of 
the (EC)DSA, respectively and m, t be positive integers. Let also 
X, Y ∈ Z>0 such that [k−1]q < X, a < Y . If

X2Y 1+γ (t,m) < (ζ(w)qα(m)+β(m)t)1/(α(m)+β(m)t/2) (2)

where

α(m) = m(m + 1)(m + 2)

6
, β(m) = m(m + 1)

2
,

w = (m + 1)(m + 2)

2
+ t(m + 1),

γ (t,m) = β(m)t
(m+t+1

m − 1
2

)
α(m) + β(m)t/2

and

ζ(w) = 2−w2/4 w−w/2, (3)

then for sufficiently large m we can efficiently find two poly-
nomials H1(x, y) and H2(x, y) such that, H1([k−1]q, a) =
H2([k−1]q, a) = 0.

For the proof of this theorem we will construct a suit-
able lattice and we will then apply Coppersmith’s method. 
In fact in the proposition we shall optimize the previous 
theorem, to get suitable values for the parameters m, t , 
such that greater upper bound for X · Y will be reached 
(compared to [13]). Finally, using FACT 1, the heuristic and 
plugging m = 6 and t = 1 in Theorem 1.2, the proposition 
will follow.

Roadmap. In the second section we present some prelim-
inaries. In section 3 we prove Theorem 1.2 and in the next 
section we proceed with the proof of Proposition 1.1. Our 
attack is illustrated by an example in section 5 and in the 
final section we provide some concluding remarks.

2. Auxiliary results

The main purpose of this section is to present some 
basic results necessary for the proof of Theorem 1.2. For 
some details of the computations in Lemmas 2.4 and 2.5
see [6, Chapter 6].

Lemma 2.1. Let h(x, y) ∈R[x, y] is a sum of w monomials. Let 
X, Y in R>0 and integers x0, y0 such that |x0| < X, |y0| < Y . 
Suppose that

i. h(x0, y0) ∈ Z, ii. ||h(xX, yY )|| =
√∑

i, j(hi, j X i Y j)2 <

1√
w

,

then h(x0, y0) = 0.

Proof. [6, FACT 2.4.1, p.17]. �
Lemma 2.2. Let L be a lattice and b1, b2, . . . , bw is an LLL-
reduced basis of L. Then

||b1|| < 2(w−1)/4(det L)1/w ,

||b2|| ≤ 2w/4

(
det L

||b1||

)1/(w−1)

, ||b2|| < 3

2
||b1||.
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