
Information Processing Letters 116 (2016) 273–278

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A faster FPT algorithm for 3-path vertex cover

Ján Katrenič a,b,∗
a Ness Technologies, Ness Košice Development Center, Slovakia
b Institute of Computer Science, P.J. Šafárik University, Košice, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 July 2015
Received in revised form 2 December 2015
Accepted 8 December 2015
Available online 10 December 2015
Communicated by Ł. Kowalik

Keywords:
Fixed-parameter algorithm
Path vertex cover
Dissociation number
Branch and reduce
Analysis of algorithms
Computational complexity
Graph algorithms

The k-path vertex cover of a graph G is a subset S of vertices of G such that every path 
on k vertices in G contains at least one vertex from S . Denote by ψk(G) the minimum 
cardinality of a k-path vertex cover set in G . The minimum k-path vertex cover problem 
(k-PVCP) is to find a k-path vertex cover of size ψk(G). In this paper we present an FPT 
algorithm to the 3-PVCP with runtime O (1.8172snO (1)) on a graph with n vertices. The 
algorithm constructs a 3-path vertex cover of size at most s in a given graph G , or reports 
that no such 3-path vertex cover exists in G . This improves previous O (2snO (1)) upper 
bound by Tu [5] and O (1.882snO (1)) upper bound by Wu [13].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper we consider only finite non-oriented 
graphs without loops or multiple edges. For a graph G
and a positive integer k a subset of vertices S ⊆ V (G) is 
called a k-path vertex cover if every path on k vertices in 
G contains at least one vertex from S . Denote by ψk(G)

the minimum cardinality of a k-path vertex cover in G . 
The minimum k-path vertex cover problem (k-PVCP) is prob-
lem of finding a k-path vertex cover of size ψk(G). Clearly, 
the 2-PVCP corresponds to the well-known vertex cover 
problem.

The 3-PVCP is dual problem to dissociation number prob-
lem (given a graph G , find a maximum size induced sub-
graph of G with vertex degree at most 1). The dissociation 
number problem was firstly studied by Papadimitriou and 
Yannakakis who proved it to be NP-hard in the class of 
bipartite or planar graphs [10,11]. For an overview on re-

* Correspondence to: Institute of Computer Science, P.J. Šafárik Univer-
sity, Košice, Slovakia.

E-mail address: jkatrenic@gmail.com.

sults of polynomially solvable classes of graphs for 3-PVCP 
we refer the reader to [4].

Recently, approximation algorithms have been designed 
for 3-PVCP. Kardoš et al. [2] presented polynomial-time 
23/11-approximation algorithm to the 3-PVCP and k-ap-
proximation to the weighted k-PVCP. This bound for 
3-PVCP was improved by Tu and Zhou [8,9] providing 
2-approximation algorithm to the weighted 3-PVCP. Tu and 
Yang [7] proved that 3-PVCP is NP-hard for cubic planar 
graphs with girth 3, and a 1.57-approximation greedy al-
gorithm was given for 3-PVCP in cubic graphs. Li and Tu 
[3] gave 2-approximation to 4-PVCP in cubic graphs. An 
open problem is the existence of a constant c such that, for 
each k ≥ 2, k-PVCP has a polynomial-time c-approximation 
algorithm [1,2].

Kardoš et al. [2] presented an exact algorithm for 
3-PVCP with running time of O∗(1.5171n) on a graph with 
n vertices. Throughout this paper, the notation O∗() sup-
presses polynomial factors. Recently, Tu [5] gave a fixed-
parameter algorithm for 3-PVCP of runtime O∗(2s). The 
algorithm constructs a 3-PVC set of size at most s in a 
given graph G , or reports that no such 3-PVC set exists 

http://dx.doi.org/10.1016/j.ipl.2015.12.002
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jkatrenic@gmail.com
http://dx.doi.org/10.1016/j.ipl.2015.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.12.002&domain=pdf


274 J. Katrenič / Information Processing Letters 116 (2016) 273–278

in G . Thus, for small parameter values s, such algorithm 
solves the problem effectively. The result of [5] uses a tech-
nique of iterative compression. This result was improved 
by Wu [13], who presented an algorithm for 3-PVCP of 
runtime O∗(1.882s). Very recently, Tu and Jin [6] pre-
sented an algorithm with runtime O ∗(3s) for the 4-PVCP 
problem.

In this paper, we provide an algorithm for 3-PVCP of 
runtime O∗(1.8172s). Our results are obtained by using a 
branch-and-reduce approach. The algorithm consists of a 
set of combinatorial branching and reduction rules. Each 
rule transforms the current instance of a problem into a 
set of smaller instances. The analysis of the algorithm con-
siders the worst-case branch over combinatorial cases and 
derives an upper bound accordingly.

2. Preliminaries

Throughout this paper we use standard graph theory 
notation. In particular, let N(v) denote the set of all neigh-
bors of v in a graph G . Let N[v] = N(v) ∪ {v}. For a set of 
vertices S , let N[S] = ⋃

u∈S N[u] and let N(S) = N[S] � S . 
Let degG(v) denote the degree of a vertex v in a graph G . 
The minimum degree of the vertices in a graph G is de-
noted by δ(G). Similarly, we write �(G) as the maximum 
degree of vertices in G . For a graph G and a set of ver-
tices S , let G − S denote the subgraph of G induced by a 
set of vertices V (G) � S . In other words, G − S is obtained 
from G by deleting all the vertices in S and their incident 
edges.

For a graph G and a positive integer k a subset of ver-
tices S ⊆ V (G) is called a k-path vertex cover (k-PVC) if 
every path on k vertices in G contains at least one ver-
tex from S . A set of vertices S is called s-size k-PVC of G
if S is a k-PVC and |S| ≤ s. Denote by ψk(G) the minimum 
cardinality of a k-path vertex cover in G . Let �k(G, s) be a 
boolean function such that �k(G, s) = (ψk(G) ≤ s).

Problem 2.1 (Minimum k-path vertex cover problem, k-PVCP). 
Given a graph G , find a k-path vertex cover S of G , 
|S| = ψk(G).

Problem 2.2 (Parametrized k-path vertex cover problem, 
k-PPVCP). Given a graph G and a positive integer s, find 
a k-path vertex cover S of G , |S| ≤ s, or report that no 
such k-path vertex cover exists.

As observed in [5], there is a simple polynomial-time 
reduction from the minimum k-path vertex problem to the 
parametrized k-path vertex cover problem. In this paper 
we focus on the problem of computing �k(G, s), i.e. the 
decision version of the problem. It is easy to see that a 
runtime upper bound for computing �k(G, s) implies the 
same runtime upper bound for the k-PPVCP and k-PVCP 
up to a polynomial factor.

Observe that if a graph G contains a path on vertices 
u1, u2, . . . , uk then

�k(G, s) =
∨

i=1,...,k

�k(G − {ui}, s − 1). (1)

Let Tpath(n, k) be an upper bound for running time of 
finding a k-path in a given graph on n vertices (k-path 
problem). The recurrence formula (1) yields to a sim-
ple branch-and-reduce algorithm for computing �k(G, s)
with runtime upper bound O∗(ks · Tpath(|V (G)|, k)). By 
result of Zehavi [14] there is a deterministic algorithm 
for the k-path problem with running time O∗(2.597k)

and by result of Williams [12] there is a randomized al-
gorithm for the k-path problem with runtime O∗(2k). 
Therefore, the algorithm based on the recurrence for-
mula (1) yields to a fixed-parameter algorithm to the 
k-PVCP with runtime O∗(ks), for every positive constant 
k ≥ 2.

3. A faster FPT algorithm for 3-path vertex cover problem

In this section we provide an algorithm for computing 
the value of �3(G, s) with runtime O∗(1.8172s). Our algo-
rithm is based on the branch-and-reduce approach, which 
consists of a set of reduction and branching rules. A solu-
tion for the current problem instance (G, s) is computed 
by recursing on smaller subinstances such that if an s-size 
3-PVC exists on G , it is computed for at least one subin-
stance. Moreover, each subinstance (G ′, s′) of the current 
problem instance (G, s) in our algorithm is such that s′ ≤ s
and G ′ is a proper induced subgraph of G . If the algorithm 
considers only one subinstance in a given case then we 
say it is a reduction rule, otherwise a branching rule. Our 
algorithm terminates on a trivial problem instance when 
the graph of the current problem instance is empty or the 
value of s is negative. Otherwise, the algorithm uses one 
of the branching or reducing rules.

On a graph G we define the following set of conditions 
c1, . . . , c7:

(c1): G contains a vertex of degree 0.
(c2): G has two vertices u, v ∈ V (G) such that N(u) ⊆

N[v] and u 	= v .
(c3): �(G) ≥ 4.
(c4): G has a cycle of length 3.
(c5): G has two neighboring vertices of degree 2.
(c6): G contains a vertex of degree 2.
(c7): G is a cubic graph.

Our algorithm consists of a set of 7 rules. The i-th rule 
applies when G satisfies the condition ci but none of con-
ditions c1, . . . , ci−1. A graph satisfying none of conditions 
c1, c2, c3 contains only vertices of degree 2 or 3. Note that 
if a graph contains a vertex of degree 1 it satisfies the 
condition c2. Finally, a graph satisfying none of conditions 
c1, . . . , c6 is cubic graph. Therefore at least one of the 7
rules applies on an arbitrary graph G .

Each problem subinstance created by a branching rule 
in our algorithm is to compute �3(G − R, s − |R|), for any 
R ⊆ V (G). In the following lemma we show that if an orig-
inal problem instance (G, s) does not have a solution, then 
subinstance (G − R, s − |R|) does not have a solution.

Lemma 3.1. Let G be a graph and R ⊆ V (G). If �3(G, s) is false 
then �3(G − R, s − |R|) is false.



Download English Version:

https://daneshyari.com/en/article/427403

Download Persian Version:

https://daneshyari.com/article/427403

Daneshyari.com

https://daneshyari.com/en/article/427403
https://daneshyari.com/article/427403
https://daneshyari.com

