Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A faster FPT algorithm for 3-path vertex cover

Ján Katrenič^{a,b,*}

^a Ness Technologies, Ness Košice Development Center, Slovakia

^b Institute of Computer Science, P.J. Šafárik University, Košice, Slovakia

ARTICLE INFO

Article history: Received 18 July 2015 Received in revised form 2 December 2015 Accepted 8 December 2015 Available online 10 December 2015 Communicated by Ł. Kowalik

Keywords: Fixed-parameter algorithm Path vertex cover Dissociation number Branch and reduce Analysis of algorithms Computational complexity Graph algorithms

ABSTRACT

The *k*-path vertex cover of a graph *G* is a subset *S* of vertices of *G* such that every path on *k* vertices in *G* contains at least one vertex from *S*. Denote by $\psi_k(G)$ the minimum cardinality of a *k*-path vertex cover set in *G*. The minimum *k*-path vertex cover problem (*k*-PVCP) is to find a *k*-path vertex cover of size $\psi_k(G)$. In this paper we present an FPT algorithm to the 3-PVCP with runtime $O(1.8172^s n^{O(1)})$ on a graph with *n* vertices. The algorithm constructs a 3-path vertex cover of size at most *s* in a given graph *G*, or reports that no such 3-path vertex cover exists in *G*. This improves previous $O(2^s n^{O(1)})$ upper bound by Tu [5] and $O(1.882^s n^{O(1)})$ upper bound by Wu [13].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper we consider only finite non-oriented graphs without loops or multiple edges. For a graph *G* and a positive integer *k* a subset of vertices $S \subseteq V(G)$ is called a *k-path vertex cover* if every path on *k* vertices in *G* contains at least one vertex from *S*. Denote by $\psi_k(G)$ the minimum cardinality of a *k*-path vertex cover in *G*. The *minimum k-path vertex cover problem* (*k*-PVCP) is problem of finding a *k*-path vertex cover of size $\psi_k(G)$. Clearly, the 2-PVCP corresponds to the well-known vertex cover problem.

The 3-PVCP is dual problem to *dissociation number problem* (given a graph G, find a maximum size induced subgraph of G with vertex degree at most 1). The dissociation number problem was firstly studied by Papadimitriou and Yannakakis who proved it to be NP-hard in the class of bipartite or planar graphs [10,11]. For an overview on re-

E-mail address: jkatrenic@gmail.com.

http://dx.doi.org/10.1016/j.ipl.2015.12.002 0020-0190/© 2015 Elsevier B.V. All rights reserved. sults of polynomially solvable classes of graphs for 3-PVCP we refer the reader to [4].

Recently, approximation algorithms have been designed for 3-PVCP. Kardoš et al. [2] presented polynomial-time 23/11-approximation algorithm to the 3-PVCP and *k*-approximation to the weighted *k*-PVCP. This bound for 3-PVCP was improved by Tu and Zhou [8,9] providing 2-approximation algorithm to the weighted 3-PVCP. Tu and Yang [7] proved that 3-PVCP is NP-hard for cubic planar graphs with girth 3, and a 1.57-approximation greedy algorithm was given for 3-PVCP in cubic graphs. Li and Tu [3] gave 2-approximation to 4-PVCP in cubic graphs. An open problem is the existence of a constant *c* such that, for each $k \ge 2$, *k*-PVCP has a polynomial-time *c*-approximation algorithm [1,2].

Kardoš et al. [2] presented an exact algorithm for 3-PVCP with running time of $\mathcal{O}^*(1.5171^n)$ on a graph with n vertices. Throughout this paper, the notation $\mathcal{O}^*()$ suppresses polynomial factors. Recently, Tu [5] gave a fixed-parameter algorithm for 3-PVCP of runtime $\mathcal{O}^*(2^s)$. The algorithm constructs a 3-PVC set of size at most s in a given graph G, or reports that no such 3-PVC set exists

CrossMark

^{*} Correspondence to: Institute of Computer Science, P.J. Šafárik University, Košice, Slovakia.

in *G*. Thus, for small parameter values *s*, such algorithm solves the problem effectively. The result of [5] uses a technique of iterative compression. This result was improved by Wu [13], who presented an algorithm for 3-PVCP of runtime $\mathcal{O}^*(1.882^s)$. Very recently, Tu and Jin [6] presented an algorithm with runtime $O^*(3^s)$ for the 4-PVCP problem.

In this paper, we provide an algorithm for 3-PVCP of runtime $\mathcal{O}^*(1.8172^s)$. Our results are obtained by using a branch-and-reduce approach. The algorithm consists of a set of combinatorial branching and reduction rules. Each rule transforms the current instance of a problem into a set of smaller instances. The analysis of the algorithm considers the worst-case branch over combinatorial cases and derives an upper bound accordingly.

2. Preliminaries

Throughout this paper we use standard graph theory notation. In particular, let N(v) denote the set of all neighbors of v in a graph G. Let $N[v] = N(v) \cup \{v\}$. For a set of vertices S, let $N[S] = \bigcup_{u \in S} N[u]$ and let $N(S) = N[S] \setminus S$. Let $deg_G(v)$ denote the degree of a vertex v in a graph G. The minimum degree of the vertices in a graph G is denoted by $\delta(G)$. Similarly, we write $\Delta(G)$ as the maximum degree of vertices in G. For a graph G and a set of vertices S, let G - S denote the subgraph of G induced by a set of vertices $V(G) \setminus S$. In other words, G - S is obtained from G by deleting all the vertices in S and their incident edges.

For a graph *G* and a positive integer *k* a subset of vertices $S \subseteq V(G)$ is called a *k*-path vertex cover (*k*-PVC) if every path on *k* vertices in *G* contains at least one vertex from *S*. A set of vertices *S* is called *s*-size *k*-PVC of *G* if *S* is a *k*-PVC and $|S| \leq s$. Denote by $\psi_k(G)$ the minimum cardinality of a *k*-path vertex cover in *G*. Let $\Psi_k(G, s)$ be a boolean function such that $\Psi_k(G, s) = (\psi_k(G) \leq s)$.

Problem 2.1 (*Minimum k-path vertex cover problem, k-PVCP*). Given a graph *G*, find a *k*-path vertex cover *S* of *G*, $|S| = \psi_k(G)$.

Problem 2.2 (*Parametrized k-path vertex cover problem,* k-*PPVCP*). Given a graph G and a positive integer s, find a k-path vertex cover S of G, $|S| \le s$, or report that no such k-path vertex cover exists.

As observed in [5], there is a simple polynomial-time reduction from the minimum *k*-path vertex problem to the parametrized *k*-path vertex cover problem. In this paper we focus on the problem of computing $\Psi_k(G, s)$, i.e. the decision version of the problem. It is easy to see that a runtime upper bound for computing $\Psi_k(G, s)$ implies the same runtime upper bound for the *k*-PPVCP and *k*-PVCP up to a polynomial factor.

Observe that if a graph *G* contains a path on vertices u_1, u_2, \ldots, u_k then

$$\Psi_k(G, s) = \bigvee_{i=1,\dots,k} \Psi_k(G - \{u_i\}, s-1).$$
(1)

Let $T_{path}(n, k)$ be an upper bound for running time of finding a k-path in a given graph on n vertices (k-path problem). The recurrence formula (1) yields to a simple branch-and-reduce algorithm for computing $\Psi_k(G, s)$ with runtime upper bound $\mathcal{O}^*(k^s \cdot T_{path}(|V(G)|, k))$. By result of Zehavi [14] there is a deterministic algorithm for the k-path problem with running time $\mathcal{O}^*(2.597^k)$ and by result of Williams [12] there is a randomized algorithm for the k-path problem with runtime $\mathcal{O}^*(2^k)$. Therefore, the algorithm based on the recurrence formula (1) yields to a fixed-parameter algorithm to the k-PVCP with runtime $\mathcal{O}^*(k^s)$, for every positive constant $k \geq 2$.

3. A faster FPT algorithm for 3-path vertex cover problem

In this section we provide an algorithm for computing the value of $\Psi_3(G, s)$ with runtime $\mathcal{O}^*(1.8172^s)$. Our algorithm is based on the branch-and-reduce approach, which consists of a set of reduction and branching rules. A solution for the current problem instance (G, s) is computed by recursing on smaller subinstances such that if an s-size 3-PVC exists on G, it is computed for at least one subinstance. Moreover, each subinstance (G', s') of the current problem instance (*G*, *s*) in our algorithm is such that $s' \leq s$ and G' is a proper induced subgraph of G. If the algorithm considers only one subinstance in a given case then we say it is a reduction rule, otherwise a branching rule. Our algorithm terminates on a trivial problem instance when the graph of the current problem instance is empty or the value of s is negative. Otherwise, the algorithm uses one of the branching or reducing rules.

On a graph *G* we define the following set of conditions c_1, \ldots, c_7 :

- (c_1) : *G* contains a vertex of degree 0.
- (c₂): *G* has two vertices $u, v \in V(G)$ such that $N(u) \subseteq N[v]$ and $u \neq v$.
- (c_3) : $\Delta(G) \geq 4$.
- (c_4) : *G* has a cycle of length 3.
- (c_5) : *G* has two neighboring vertices of degree 2.
- (c_6) : *G* contains a vertex of degree 2.
- (c_7) : *G* is a cubic graph.

Our algorithm consists of a set of 7 rules. The *i*-th rule applies when *G* satisfies the condition c_i but none of conditions c_1, \ldots, c_{i-1} . A graph satisfying none of conditions c_1, c_2, c_3 contains only vertices of degree 2 or 3. Note that if a graph contains a vertex of degree 1 it satisfies the condition c_2 . Finally, a graph satisfying none of conditions c_1, \ldots, c_6 is cubic graph. Therefore at least one of the 7 rules applies on an arbitrary graph *G*.

Each problem subinstance created by a branching rule in our algorithm is to compute $\Psi_3(G - R, s - |R|)$, for any $R \subseteq V(G)$. In the following lemma we show that if an original problem instance (G, s) does not have a solution, then subinstance (G - R, s - |R|) does not have a solution.

Lemma 3.1. Let G be a graph and $R \subseteq V(G)$. If $\Psi_3(G, s)$ is false then $\Psi_3(G - R, s - |R|)$ is false.

Download English Version:

https://daneshyari.com/en/article/427403

Download Persian Version:

https://daneshyari.com/article/427403

Daneshyari.com