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It is shown that antidomain semirings are more expressive than test semirings and that 
Kleene algebras with domain are more expressive than Kleene algebras with tests. It is 
also shown that Kleene algebras with domain are expressive for propositional Hoare logic 
whereas Kleene algebras with tests are not.
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1. Introduction

Kleene algebras with tests (KAT) [1] yield arguably the 
simplest and most elegant model of the control flow in 
simple while-programs. They provide an abstract algebraic 
view on the standard relational semantics of imperative 
programs, have been applied to various program analy-
sis tasks and form the backbone of program construction 
and verification tools. In particular, the inference rules of 
propositional Hoare logic (PHL)—Hoare logic without an 
assignment rule—can be derived in this setting [2]. Kleene 
algebras with domain (KAD) [3,4] are a similar formalism 
that provides an algebraic approach to propositional dy-
namic logic and predicate transformer semantics. The in-
ference rules of PHL are derivable in KAD as well and it is 
known that every KAD is a KAT [4].

From a complexity point of view, the equational theory 
of KAT is known to be PSPACE complete [5], whereas that 
of KAD is decidable in EXPTIME [6]. It seems also plausible 
that KAD is more expressive than KAT; after all, modal box 
and diamond operators can be defined in KAD.
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This article makes the expressivity gap between KAT
and KAD precise, showing that KAD is strictly more ex-
pressive than KAT with a simple, natural and interesting 
example. Firstly, I show that the inversion of the sequential 
composition rule of PHL, when expressed as a formula in 
the language of KAT, is derivable from the axioms of KAD. 
Secondly, I present a model of KAT in which this formula 
does not hold. In addition I show that KAT is not expres-
sive for PHL, whereas this is trivially the case for KAD.

Inverting the inference rules of Hoare logic is relevant 
to verification condition generation in the context of pro-
gram correctness, where intermediate assertions such as 
weakest liberal preconditions need to be computed. It is 
also related to the question of expressivity of Hoare logic 
in relative completeness proofs.

2. KAD and KAT

This section presents the four algebraic classes con-
sidered in this article. Elements of these algebras can be 
viewed as programs or computations. Binary relations as a 
model of state change provide formal support for this view.

Firstly, antidomain semirings are semirings with an addi-
tional antidomain operation that models those states from 
which a given computation is not enabled. Secondly, test 
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semirings are semirings endowed with a notion of test (as 
in a conditional or loop), proposition or assertion. Finally, 
Kleene algebras with domain are antidomain semirings with 
an additional operation of finite iteration of computations 
(the Kleene star); and Kleene algebras with tests are test 
semirings extended by this operation. The subclass rela-
tionships between these algebras are listed in Lemma 3
and depicted in Fig. 1.

A semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0)

is a commutative monoid, (S, ·, 1) is a monoid; and the 
two monoids interact via the distributivity laws

x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z

and the annihilation laws 0 · x = 0 and x · 0 = 0.
A dioid is an additively idempotent semiring, that is, 

x + x = x holds for all x ∈ S . In this case, (S, +) forms a 
semilattice with order relation defined as

x ≤ y ⇔ x + y = y.

Multiplication is isotone with respect to the order, x ≤ y
implies both z · x ≤ z · y and x · z ≤ y · z, and 0 ≤ x holds 
for all x ∈ S .

A Kleene algebra is a structure (K , +, ·, 0, 1, ∗) such that 
(K , +, ·, 0, 1) is a dioid and the star operation ∗ : K → K
satisfies the axioms

1 + x · x∗ = x∗, z + x · y ≤ y ⇒ x∗ · z ≤ y,

1 + x∗ · x = x∗, z + y · x ≤ y ⇒ z · x∗ ≤ y.

One may think of + as the nondeterministic choice be-
tween two computations, · as their sequential composition, 
0 as the abortive computation, 1 as the ineffective compu-
tation, and ∗ as the finite iteration of computations.

An antidomain semiring [4] is a structure (S, +, ·, 0, 1, a)

such that (S, +, ·, 0, 1) is a semiring and the antidomain 
operation a : S → S satisfies the axioms

a(x) · x = 0,

a(x · y) + a(x · a(a(y))) = a(x · a(a(y))),

a(x) + a(a(x)) = 1.

These imply that every antidomain semiring is a dioid. In-
tuitively, a(x) models all those states from which computa-
tion x is not enabled. A domain operation can be defined on 
S as d = a ◦ a. Of course, d(x) models the set of all states 
from which x is enabled. The function d is a retraction, 
that is, d ◦ d = d, and it follows that x ∈ d(S) ⇔ d(x) = x, 
where d(S) denotes the image of the set S under d. More-
over, a ◦ a ◦ a = a, which implies that d(S) = a(S). These 
facts can be used to show that (a(S), +, ·, a, 0, 1) forms 
a boolean algebra in which multiplication coincides with 
meet, whereas direct axiomatisations of the domain oper-
ation would only yield a subalgebra d(S) that is a distribu-
tive lattice [4]. The fixpoint property d(x) = x can be used 
for declaring domain and antidomain elements in formu-
las. Since ∀x. d(x) = x ⇒ ϕ(x) and ∀x. ϕ(d(x)) are logically 
equivalent, one can equally write d(t) to denote an ele-
ment of the domain or antidomain subalgebra. The antido-
main operation a is boolean complementation on a(S); its 
presence is therefore essential for the expressivity proof.

In addition, the following fact about antidomain semir-
ings is needed.

Lemma 1. (See [4].) In every antidomain semiring,

x · y = 0 ⇔ x · d(y) = 0.

A Kleene algebra with domain [4] is a structure given by 
(K , +, ·, 1, a, ∗) such that (K , +, ·, 0, 1, a) is an antidomain 
semiring and (K , +, ·, 0, 1, ∗) a Kleene algebra.

A test semiring is a structure (S, B, ι) such that S is a 
dioid, B a boolean algebra called test algebra or algebra of 
tests, and ι : B → S an embedding:

ι(0) = 0, ι(1) = 1, ι(x 
 y) = ι(x) + ι(y),

ι(x � y) = ι(x) · ι(y).

A Kleene algebra with tests [1] is a test semiring (K , B, ι) for 
which K is a Kleene algebra. In the tradition of Kleene al-
gebras with tests, the embedding is left implicit. I write 
p, q, r, . . . for tests, and x, y, z for arbitrary semiring ele-
ments and spell out the signature as (K , B, +, ·, , 0, 1, ∗). 
By the embedding, boolean join and semiring addition are 
identified and so are boolean meet and semiring multipli-
cation. The least and greatest element of the boolean alge-
bra are mapped to 0 and 1 of the semiring, respectively. 
The operation is partial; it denotes complementation on 
the boolean algebra.

I write AS for the class and axiom system of antido-
main semirings, TS for that of test semirings, KAD for that 
of Kleene algebras with domain and KAT for that of Kleene 
algebras with tests.

The notions of domain, antidomain and test can be mo-
tivated from the model of binary relations.

Proposition 2. (See [2,4].) Let 2A×A be the set of binary rela-
tions over the set A. Suppose that

R · S = {(a,b) | ∃c. (a, c) ∈ R ∧ (c,b) ∈ S},
id = {(a,a) | a ∈ A},
a(R) = {(a,a) | ∀b. (a,b) /∈ R},
R∗ =

⋃

i∈N
Ri,

where R0 = id and Ri+1 = R · Ri . Then

1. (2A×A, {R | R ⊆ id}, ∪, ·, , ∅, id, ∗) ∈ KAT,
2. (2A×A, ∪, ·, ∅, id, a, ∗} ∈ KAD.

The operation · on relations is the standard relational 
composition; id is the identity relation on A and ∗ the re-
flexive transitive closure operation. Tests do not correspond 
to sets B ⊆ A, but to relations {(b, b) | b ∈ B} ⊆ id, so-called 
subidentities. The operation a is domain complementation 
on relations; a(R) represents those states in A that are not 
related by R to any other state as a subidentity. Hence a
maps each subidentity to its boolean complement in the 
subalgebra of subidentities. In the relational semantics of 
programs, as usual, binary relations model state changes 
in a program as caused by assigning values to variables. 
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