
Information Processing Letters 116 (2016) 304–309

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Improving counting Bloom filter performance with 

fingerprints

Salvatore Pontarelli a,∗,1, Pedro Reviriego b,2, Juan Antonio Maestro b,2

a Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Via del Politecnico 1, 00133 Rome, Italy
b Universidad Antonio de Nebrija, C/ Pirineos, 55, E-28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2014
Received in revised form 4 November 2015
Accepted 4 November 2015
Available online 11 November 2015
Communicated by M. Chrobak

Keywords:
Algorithms
Bloom filters
Data structures

Bloom filters (BFs) are used in many applications for approximate check of set membership. 
Counting Bloom filters (CBFs) are an extension of BFs that enable the deletion of entries 
at the cost of additional storage requirements. Several alternatives to CBFs can be used 
to reduce the storage overhead. For example schemes based on d-left hashing or Cuckoo 
hashing have been proposed. Recently, also a new type of CBF, the Variable Increment 
Counting Bloom Filter (VI-CBF) has been introduced to improve performance. The VI-CBF
uses different increments in the filter counters to reduce the false positive rate and 
therefore the storage requirements. In this paper, another mechanism to improve CBF 
performance: the Fingerprint Counting Bloom Filter (FP-CBF) is presented. The proposed 
scheme is based on the use of fingerprints on the filter entries to reduce the false positive 
rate. This results in a simpler implementation than VI-CBFs in terms of number of hash 
functions and arithmetic operations. The false positive rate of the proposed scheme has 
also been analyzed theoretically and by simulation and compared with the VI-CBF. The 
results show that the proposed scheme can achieve lower false positive rates than those of 
a simple VI-CBF implementation. When compared with a better and more complex VI-CBF 
implementation, the FP-CBF outperforms it when the number of bits per element is large 
while the VI-CBF is better for low number of bits per element.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Introduced by Burton Bloom more than forty years ago, 
Bloom Filters [1] have found numerous applications in 
computing and networking [2–4]. Bloom filters (BF) are 
a simple data structure that provides check set mem-
bership with a small probability of false positives. A BF 
uses an array of m bits and k hash functions. To add an 
element x, the positions given by the k hash functions 
h1(x), h2(x), . . . , hk(x) are set to one. A query for a given 

* Corresponding author.
E-mail addresses: pontarelli@ing.uniroma2.it (S. Pontarelli), 

previrie@nebrija.es (P. Reviriego), jmaestro@nebrija.es (J.A. Maestro).
1 Tel.: +39 0672597369.
2 Tel.: +34 914521100; fax: +34 914521110.

element is successful when the positions given by the k
hash functions are all ones. If the element has been pre-
viously added to the BF, the query will always be success-
ful. For elements that have not been added to the BF, in 
most cases, the query will fail. However, there is a small 
probability that the query is successful producing a false 
positive. False positives can be reduced by increasing the 
size of the array and thus the storage requirements. A lim-
itation of BFs is that elements cannot be removed as a 
position in the array may have been set to one by dif-
ferent elements. To overcome this issue, Counting Bloom 
filters (CBF) were introduced in [5]. In CBFs, the array in-
stead of single bits is composed of several bits and each 
position is used as a counter. When an entry x is added 
the counters with positions h1(x), h2(x), . . . , hk(x) are in-
cremented. Conversely, to delete an entry those counters 

http://dx.doi.org/10.1016/j.ipl.2015.11.002
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:pontarelli@ing.uniroma2.it
mailto:previrie@nebrija.es
mailto:jmaestro@nebrija.es
http://dx.doi.org/10.1016/j.ipl.2015.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.11.002&domain=pdf


S. Pontarelli et al. / Information Processing Letters 116 (2016) 304–309 305

are decremented. A query is successful when all the coun-
ters with positions h1(x), h2(x), . . . , hk(x) are larger than 
zero. The use of counters increases the storage require-
ments of CBFs compared to BFs. For example, if c bits are 
used for the counters, a CBF requires c∗m bits. In most 
practical configurations a value of c = 3 or 4 bits is enough 
to ensure a low probability of counter overflow [5,6]. Even 
if BFs and CBFs have been adopted in many applications, it 
is worth to note that in some cases, it may be better not to 
use a BF [7]. This occurs when the false positive rate is not 
smaller than the probability that the element is actually in 
the set.

Many optimizations of BFs have been proposed for ex-
ample to efficiently deal with dynamic datasets [8] or to 
determine the optimal parameter settings for some appli-
cations [9]. Several enhancements to CBFs have also been 
proposed focusing on reducing the storage requirements 
and the false positive rate. For example in [10] the use of 
variable length counters was proposed. In [11], a coding 
for the counters that reduces the number of bits required 
was presented while in [12,13] multiple level implemen-
tations for the BFs were considered. In [14], an alternative 
construction of CBFs based on d-left hashing was proposed 
to reduce the storage requirements. More recently in [15]
the use of Cuckoo hashing has been proposed to efficiently 
implement CBF functionality.

In [16] a simple enhancement of the CBF, the Variable 
Increment Counting Bloom Filter (VI-CBF) was introduced. 
In a VI-CBF, additional hash functions (g1(x), g2(x), . . . ,
gk(x)) are used to determine the increments i to be added 
to the CBF counters when adding an entry. The same val-
ues are used to decrement the counters when an entry 
is removed. The increments are designed in such a way 
that the counter values can be used to reduce the false 
positive rate. This can be done in several ways. The sim-
plest implementation is to take the increments from the 
set D L = {L, L + 1, . . . , 2∗L − 1}. Therefore a counter with 
a value equal to or smaller than 2∗L − 1 has been set by 
a single element. When querying for an element, the ad-
ditional hashes can be used to compare against the stored 
counters when they have a value equal to or smaller than 
2∗L − 1. If the values are different, the query fails. This 
occurs with a probability of (L − 1)/L. This provides sig-
nificant reductions in the false positive rate as a large per-
centage of positions in the array have been set by a single 
element for practical false positive rates. In fact, the distri-
bution of the number of elements mapped to a given po-
sition can be approximated by a Poisson distribution that 
when the number of elements is equal to or smaller than 
the number of positions has its largest value (not consid-
ering zero) at one. This implementation of the VI-CBF is 
also capable of detecting in some cases when a counter 
has been set by two elements and use that information to 
also reduce the probability of false positives. A more gen-
eral implementation of the VI-CBF uses increments from a 
set D formed by any given set of integers. This implemen-
tation is more complex but can reduce the false positive 
rate. For example in [16] the set D = {8, 12, 14, 15} was 
shown to provide good results. In the rest of the paper, 
both implementations of the VI-CBF will be considered and 
denoted as D L and D respectively. Although more bits are 

required to avoid the overflow of the counters, the VI-CBF 
has been shown to reduce the false positive rate and the 
storage requirements compared to those of a traditional 
CBF. That is 1) for a given storage size in bits, the VI-CBF 
provides a lower false positive rate and 2) to achieve a 
given false positive rate, the VI-CBF requires less storage 
than a traditional CBF. The main overhead of the VI-CBF is 
the need for additional hash functions and the arithmetic 
operations needed for addition, removal and query opera-
tions.

In this paper, the Fingerprint Counting Bloom filter 
(FP-CBF) is introduced. The FP-CBF adds fingerprints to 
the elements stored in the CBF to reduce the probabil-
ity of false positives. The use of fingerprints in combina-
tion with variable increments was suggested in [16] to 
improve the performance of alternative constructions of 
BFs [14]. Here, our goal is different, the fingerprints are 
used on a traditional CBF implementation to replace the 
variable increments. A key contribution is that to enable 
addition/removal of several items, the fingerprints are up-
dated using xor operations. This means that there is no 
limit on the number of fingerprints that can be placed on 
a given position (as opposed to hash based constructions 
of BFs). Another key contribution is to note that during 
query operations, the fingerprints can be used to reduce 
the probability of false positives for positions that have 
a counter value of one. This is linked to the observation 
that for low false positive rate many positions will have 
a counter value of one. The FP-CBF puts all those ideas 
together to achieve a performance comparable to that of 
VI-CBFs with a simpler implementation. The false positive 
rate of FP-CBFs has been evaluated both analytically and 
by simulation. The results show that it outperforms the 
D L VI-CBF implementation for a wide range of parameters. 
The FP-CBF also outperforms the D VI-CBF implementation 
when the number of bits per element is large. Conversely, 
the D VI-CBF implementation provides lower false positive 
rates when the number of bits per element is small. In 
terms of implementation complexity, only one additional 
hash function hfp(x) is needed to compute the fingerprint 
compared to k hash functions in the VI-CBF. Additionally, 
the FP-CBF does not require arithmetic operations. There-
fore its implementation is also simpler than that of VI-CBF.

The rest of the paper is organized as follows. Section 2
presents the Fingerprint Counting Bloom Filter (FP-CBF) 
and discusses its operation. In Section 3, the performance 
of the FP-CBF is analyzed theoretically providing approxi-
mations for the false positive rate. Then in Section 4, the 
scheme is evaluated by simulation and compared with the 
VI-CBF. Finally, the conclusions are presented in Section 5.

2. The fingerprint counting Bloom filter

The proposed scheme uses an array of m positions 
each of which has two fields, a counter with c bits and 
a fingerprint with f bits. Therefore the FP-CBF requires 
(c + f )∗m bits. To add/remove and query for elements, 
k + 1 hash functions are needed. The first k functions 
(h1(x), h2(x), . . . , hk(x)) are those used in a traditional CBF 
and map an element to one of the m positions. The 



Download English Version:

https://daneshyari.com/en/article/427409

Download Persian Version:

https://daneshyari.com/article/427409

Daneshyari.com

https://daneshyari.com/en/article/427409
https://daneshyari.com/article/427409
https://daneshyari.com

