Information Processing Letters 114 (2014) 85-93

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Excessively duplicating patterns represent non-regular
languages

@ CrossMark

Carles Creus 2, Guillem Godoy*!, Lander Ramos !

Universitat Politécnica de Catalunya, Omega building, Jordi Girona 1-3, Barcelona 08034, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 5 March 2013

Received in revised form 10 October 2013
Accepted 11 November 2013

Available online 13 November 2013
Communicated by A. Muscholl

A constrained term pattern s : ¢ represents the language of all instances of the term s
satisfying the constraint ¢. For each variable in s, this constraint specifies the language
of its allowed substitutions. Regularity of languages represented by sets of patterns has
been studied for a long time. This problem is known to be co-NP-complete when the
constraints allow each variable to be replaced by any term over a fixed signature, and
EXPTIME-complete when the constraints restrict each variable to a regular set. In both
Keywords: cases, duplication of variables in the terms of the patterns is a necessary condition for
Theory of computation non-regularity. This is because duplications force the recognizer to test equality between
Pattern subterms. Hence, for the specific classes of constraints mentioned above, if all patterns are
Regular tree language linear, then the represented language is necessarily regular. In this paper we focus on the
Tree automaton opposite case, that is when there are patterns with “excessively duplicating” variables. We
Tree homomorphism prove that when each pattern of a non-empty set has a duplicated variable constrained to
an infinite language, then the language represented by the set is necessarily non-regular.
We prove this result independently of the kind of constraints used, just assuming that
they are mappings from variables to arbitrary languages. Our result provides an efficient
procedure for detecting, in some cases, non-regularity of images of regular languages under
tree homomorphisms.

© 2013 Elsevier B.V. All rights reserved.

Patterns are a widely used formalism in computer sci-
ence to represent languages. As with many other represen-
tation formalisms, one is frequently interested in solving
questions like whether a given term belongs to a language,
or whether a language is a subset of another language. An-
other important question is to determine whether the lan-
guage represented by a set of patterns is (tree) regular, i.e.,
recognizable by a tree automaton [1]. This question is rele-
vant because regular tree languages have a more tractable
representation by means of tree automata, and have better
properties like closure by several set operations, and exis-
tence of efficient procedures for some of such operations
and for several decision problems.

1. Introduction

A constrained term pattern (or just a pattern) is a pair
s: ¢, where s is a term and ¢ maps each variable occur-
ring in s to a language. The pattern s: ¢ represents the
language of all terms obtained from s by replacing each
variable x occurring in s by a term in ¢(x). Thus, ¢ con-
strains the instances of s by restricting the possible substi-
tutions of each variable. A set of patterns S represents the
union of the languages represented by each pattern in S.

* Corresponding author. Tel.: +34 93 4137815; fax: +34 93 4137833,
E-mail addresses: ccreuslopez@gmail.com (C. Creus),
ggodoy@lsi.upc.edu (G. Godoy), landertxu@gmail.com (L. Ramos).
1 The three authors were supported by Spanish Ministry of Education
and Science by the FORMALISM project (TIN2007-66523).
2 Supported by an FPU grant from the Spanish Ministry of Education.

0020-0190/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.11.010

The expressive power and decidable properties of pat-
terns depend on the mechanism used to describe the con-
straints. For example, for unrestricted patterns, i.e., when
we allow to replace each variable by any term over a fixed
signature, regularity has been proved co-NP-complete [2,3].

http://dx.doi.org/10.1016/j.ipl.2013.11.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ccreuslopez@gmail.com
mailto:ggodoy@lsi.upc.edu
mailto:landertxu@gmail.com
http://dx.doi.org/10.1016/j.ipl.2013.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.11.010&domain=pdf

86 C. Creus et al. / Information Processing Letters 114 (2014) 85-93

The problem is EXPTIME-complete when the constraints
restrict each variable to a regular set [4].

Patterns with variables occurring at least twice in the
term and constrained to an infinite language are often the
cause of non-regularity. For example, a pattern of the form
f(x,x) : ¢, where ¢ maps x to an infinite language, rep-
resents a non-regular set, since tree automata only have a
finite number of states and cannot test equality between
subterms.

In contrast to patterns with duplicated variables, linear
patterns, i.e., the ones where each variable occurs at most
once in the term, increase the chance of regularity. For
example, for unrestricted patterns and for patterns with
regular constraints, if all patterns are linear, then the rep-
resented language is necessarily regular. However, when
considering more expressive constraints, linearity of the
patterns does not necessarily imply regularity of the rep-
resented language.

In this paper we focus on proving non-regularity when
the patterns of a given set have “excessively duplicating”
variables. More precisely, we prove that when each pattern
of a set has a duplicated variable constrained to an infinite
language, then the language represented by the set is nec-
essarily non-regular. This property holds independently of
the kind of constraints used, i.e., we just assume that they
are mappings from variables to arbitrary languages.

Finally, we apply our result to show an efficient (lin-
ear time) algorithm that detects, in some cases, non-
regularity of images of regular languages under tree homo-
morphisms. Note that the general case has recently been
proved EXPTIME-complete [5].

The paper is structured as follows. In Section 2 we
present basic preliminary definitions used in the rest of
the paper. In Section 3 we define patterns, the particu-
lar case of excessively duplicating patterns, and prove that
sets of excessively duplicating patterns always represent
non-regular languages. In Section 4 we apply our result on
patterns to detect, in some cases, the non-regularity of the
image of a regular language under a tree homomorphism.
We conclude in Section 5.

2. Preliminaries
2.1. Terms

We use the standard notation from the term rewriting
literature [6]. The powerset of a set S is denoted by 2%,
and the cardinal of S is denoted by #S. A signature X is a
(finite) set of function symbols with arity, which is parti-
tioned as | J; Z® such that f € £™ if the arity of f is m.
We sometimes denote X' explicitly as {f1 : m1,..., fn:mgp},
where f1,..., f; are the function symbols and my,...,my
are the corresponding arities. Symbols in X©, called con-
stants, are denoted by a, b, with possible subscripts. The
elements of a set X’ of variable symbols are denoted by x,
y, z with possible subscripts. The set 7 (X, X) of terms
over X and X, is the smallest set containing X such
that f(t1,...,tm) is in 7(X, X) whenever f € ¥™ and
t1,...,tm € T(X, X). The set of variables occurring in a
term t is denoted vars(t). A term t is called linear if each
variable occurs at most once in t. A term t is called ground

if it contains no variables. The set of all ground terms over
X is denoted 7 (X). A language over X is a set of ground
terms.

A position is a sequence of natural numbers. The sym-
bol A denotes the empty sequence, and p.p’ denotes the
concatenation of the positions p and p’. The set of posi-
tions of a term t, denoted Pos(t), is defined recursively
as Pos(f(ty,....tm) ={A}U{ip|lie{l,....m}ADpE€
Pos(tj)}. The length of a position is denoted as |p|. Note
that || =0 and |i.p| =1+ |p|. A position py is a prefix
of a position p, denoted p; < p, if there is a position p;
such that py.p; = p. Also, pq is a proper prefix of p, de-
noted p; < p, if p1 < p and p; # p. Two positions p, p’
are parallel, denoted by p|/p’, if p £ p’ and p’ € p.

The subterm of a term t at a position p € Pos(t), de-
noted t|p, is defined recursively as t|; =t and f(ty,...,
tm)lip = tilp. The replacement of the subterm at posi-
tion p in a term t by a term s, denoted t[s]p, is de-
fined recursively as t[s], = s and f(t1,...,tm)[slip =
ftr, .. GilS]p, .. tm).

The root of a term t = f(ty,...,tm) is root(t) = f.
A term t over X can be seen as a function from its set of
positions into X. For this reason, we shall denote by t(p)
the symbol labeling t at position p, i.e., t(p) = root(t|p).

The height of a term t, denoted height(t), is de-
fined recursively as height(t) = 0 if t is a variable
or a constant, and as height(f(ty,...,tm)) = 1 +
max(height(ty),..., height(ty)) otherwise.

A substitution o is a mapping from variables to terms.
It can also be used as a function from terms to terms re-
cursively defined by o (f(t1,...,tm)) = f(o(t1),...,0(tm))
for terms different from variables. For example, if o is
(x> f(b.y), y — a}, then o (g(x,y)) is g(f (b, y),).

2.2. Automata

A tree automaton (TA) is a tuple A = (Q,X,F, A),
where Q is a finite set of states, X' is a signature, F C Q is
the subset of final states (also called accepting states), and
A is a set of rules of the form f(qi,...,qm) — q, where
q1,...,qm,q€ Q and f € X, The size of A is defined by
#A=#Q.

Arunr of a TA Aonatermte7(X) is a func-
tion r: Pos(t) — Q satisfying that, for each position p €
Pos(t), if t|p is of the form f(t1,...,ty), then there ex-
ists a rule of the form f(q1,...,q9m) — ¢ in A such that
r(p.1) =q1,...,r(p.m) =qn and r(p) =q. A run r is ac-
cepting if r(A) is accepting. A term t is accepted or rec-
ognized by A if there exists an accepting run of A on t.
The language recognized by A, denoted L(A), is the set
of terms accepted by A. By L(A,q) we denote the set
of terms for which there exists a run r of A such that
r(Ax) =q.

We say that a language L is regular if there exists a TA
A such that £(A) =L.

Given a TA A, aterm t and a run r of A on t, we define
r|p as the run of A on t|, described by r|,(p’) =r(p.p’). In
addition, given a run r’ of A on a term t’ satisfying ' (1) =
r(p), we define r[r'], as the run of A on t[t'], described
by r[r'1,(p") =r(p’) for positions p’ holding p £ p’, and
otherwise r[r'],(p.p") =1'(p").

Download English Version:

https://daneshyari.com/en/article/427413

Download Persian Version:

https://daneshyari.com/article/427413

Daneshyari.com

https://daneshyari.com/en/article/427413
https://daneshyari.com/article/427413
https://daneshyari.com

