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In recent years growing interest in local distributed algorithms has widely been observed.
This results from their high resistance to errors and damage, as well as from their good
performance, which is independent of the size of the network. A local deterministic
distributed algorithm finding an approximation of a Minimum Dominating Set in planar
graphs has been presented by Lenzen et al., and they proved that the algorithm returns a

130-approximation of the Minimum Dominating Set. In this article we will show that the

Keywords:

Approximation algorithms
Distributed algorithm
Local algorithm
Dominating set

Planar graph

algorithm is two times more effective than was previously assumed, and we prove that
the algorithm by Lenzen et al. outputs a 52-approximation to a Minimum Dominating Set.
Therefore the gap between the lower bound and the approximation ratio of the best yet
local deterministic distributed algorithm is reduced by half.

© 2013 Published by Elsevier B.V.

1. Introduction

A distributed algorithm is called a local algorithm if it
runs in a constant number of synchronous communica-
tion rounds. In recent years growing interest in local dis-
tributed algorithms has widely been observed. This results
from their high resistance to errors and damage, as well as
from their good performance, which is independent of the
size of the network. These properties allow for them to be
used in practice. Recently many different algorithms have
been proposed which solve such optimisation problems as
Minimum Dominating Set, Minimum Edge Cover or Semi-
matching. However, it appears that an exact solution to op-
timisation problems is frequently impossible to achieve in
a reasonable amount of time (e.g. NP-complete problems),
which is the reason why algorithms finding approximate
solutions to such problems are taken into consideration.

Research on local distributed algorithms has been con-
ducted for several decades now (see book [6]) and numer-
ous papers have been published. Perhaps the best way to

E-mail address: wwawrzy@amu.edu.pl.
! The research has been supported by grant N N206 565740.

0020-0190/$ - see front matter © 2013 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.ipl.2013.11.008

explore the subject more thoroughly is to read an excellent
work by Suomela entitled “Survey of Local Algorithms” [7],
in which the author describes all of the major research re-
sults in the field of local algorithms.

A dominating set in a graph G = (V,E) is a subset of
vertices D C V such that every vertex v € V is an element
of D or is adjacent to at least one vertex from D. A domi-
nating set of the smallest possible size in graph G is called
a Minimum Dominating Set and will be denoted by M.

Because finding a Minimum Dominating Set is an NP-
complete problem even in planar graphs, we focus on the
constant approximation of this problem in planar graphs.
It is also known that there is an algorithm which finds
an (1+ &)-approximation of the Minimum Dominating Set
in this class of graphs in O(log*n) rounds [1]. The first
correct local algorithm for planar graphs was given in [4]
and shown to yield a 130-approximation of this prob-
lem. This result is especially significant, because most of
the previous local algorithms work on graphs of bounded
degree. The fact that such an algorithm exists is some-
what surprising, given that Czygrinow et al. in [1] and
Lenzen, Wattenhofer in [5] proved that there are no lo-
cal constant factor algorithms for the problem of find-
ing a maximum independent set, nor is there maximum
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matching in planar graphs. Czygrinow et al. also showed
that there does not exist any local algorithm that can
find a (5 — ¢)-approximation of the Minimum Dominating
Set problem in planar graphs. A reduction of the gap be-
tween the existing lower bound and the current algorithm
is an interesting aspect that is raised in this article.

Recently it has been shown in [8] that there actually
exists an algorithm finding a 636-approximation of this
problem in planar graphs in a model without unique iden-
tifiers. The issue of the resemblance of models with and
without identifiers has been raised in [2,4].

1.1. Model and notation

In this paper we work in a synchronous communica-
tion model and we use a planar graph G = (V¢, Eg) as a
representation of the network. The edges in the graph will
correspond to communication links and vertices from the
set V¢ will correspond to the processors.

In this model, algorithms are executed in synchronous
communication rounds. In each round every processor is
able to send and receive messages from/to all of its neigh-
bours and to perform local computations based on infor-
mation that has been gathered so far. We assume that
each vertex has a unique identifier of length O (logn) bits,
where n is the size of the network. In order to facilitate the
reader to understand this paper, we use similar notations
as in paper [4]. For vertices A C V¢ we define inclusive
neighbourhood of A in graph G as NX(G) ={veVg: ve
Avde=uv e Eg: ue A}. We also denote the neighbours
of A that are not in A by N4(G) := NX(G) \ A. To simplify
the notation in cases in which A = {a}, we may omit the
braces, e.g. Nq(G) instead of Ny (G). For v € Vg we also
define a set of nodes with a distance at most two to the
vertex v as N¥’(G) := N} (G), where X := N; (G).

We also need to introduce some graph theoretical ter-
minology for planar graphs, which are necessary only
in an analysis of the procedure. For a plane graph G in
R? we define a face of G as a maximal open set f in
R%\ G such that any two points in f can be connected by a
curve contained in f. There is exactly one unbounded face
fu, and the other faces are called inner faces. Furthermore,
let Reg[G] be the set of points R? without unbounded face
fu (Reg[G]:=R?\ f,). We assume that C is the smallest
boundary walk of G containing all edges adjacent to face
fu. Then we set Reg(G) := Reg[G] \ C. If a vertex v € V¢
is contained in the set of points Reg[G] (or Reg(G)), where
G is a subgraph of G’ then we write v € Reg[G] (or v €
Reg(G)). Moreover, if each vertex and each edge from G
is contained in the set of points Reg[G'] (or Reg(G’)),
we write G C Reg[G’] (or G € Reg(G")). By V¢ NReg[G] we
denote all vertices of V¢ lying inside the set of points
Reg[G].

2. Analysis of the algorithm from paper [4]

In this section an improved analysis of the algorithm
from paper [4] will be presented. Lenzen, Oswald and Wat-
tenhofer proposed an algorithm that finds a 130-approxi-
mation of a Minimum Dominating Set in planar graphs.

Algorithm 1. MDS approximation in planar graphs.
1: D1:=0, Dy :=0.
2: for v € V¢ in parallel do
31 if AAC NP (G)\ (v} such that Ny (G) € N} (G) and |A| < 6 then

4: Dy:=D1U{v}
5: end if
6: end for

7: for_v € V¢ in parallel do
8 5, :=INJ(G)\ N}, (G
9: ifveVg \Nz;1 (G) then

> residual degree

10: Ay i=max,, i) {Sw} > maximum within one hop
11: choose any d(v) € {w € Nj(G)ISW =Ay}

12: Dy := Dy U {d(v)}

13: end if

14: end for

15: return D U D;.

We show that, as a matter of fact, the value of this fac-
tor is more than two times better than was assumed, and
that it is a 52-approximation of an optimal solution. First
we will recall the formal pseudocode of the algorithm and
how it functions.

Execution of the algorithm is divided into two phases.
The first phase is responsible for adding, to the dominating
set D, vertices whose neighbourhoods cannot be domi-
nated by a small number of other vertices. It has been
proved that the size of such a set is less than three times
bigger than the order of an optimal solution M. In the sec-
ond phase each vertex that is not yet dominated adds one
vertex to D, either itself or one of its neighbours. It is al-
ways a vertex, from inclusive neighbourhood, dominating
the highest number of not yet dominated vertices that is
chosen.

2.1. Analysis of the algorithm

We note that, although, the only assumption in the al-
gorithm is that G is planar, an analysis of the procedure
uses properties of a plane drawing of G. Let M be an op-
timal solution in plane graph G = (V¢, Eg), and D and
D, as in the algorithm above. In paper [4] the following
bounds have been proved.

Lemma 1 (Lemma 4.2 in [4]). |D1 \ M| < 3|M|.
Lemma 2 (Conclusion in [4]). |D3| < 126|M|.

Notice that there is a large disproportion between the
upper bounds of sets D1 and D,. An improvement of the
upper bound of set D, turns out to be a key issue in the
new analysis of the algorithm. Although it will be based,
just as in [4], on a division of the graph into special sub-
graphs (see the double star in Fig. 1), it is different and
does not require taking into consideration as many cases
as in the original work.

Definition 1. Let H = (V, Ey) be a subgraph of a planar
graph G = (V¢, E) obtained in the following way:

1. Let Vg :=0, Eg :=0.

2. For each vertex d € D, \ M, add to the set Vy one ver-
tex v € Vg \ M such that d =d(v) (if possible). Let A
denote the set of all added vertices.



Download English Version:

https://daneshyari.com/en/article/427414

Download Persian Version:

https://daneshyari.com/article/427414

Daneshyari.com


https://daneshyari.com/en/article/427414
https://daneshyari.com/article/427414
https://daneshyari.com/

