
Information Processing Letters 114 (2014) 124–129

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A simpler counterexample to a long-standing conjecture on
the complexity of Bryant’s apply algorithm

Beate Bollig 1

TU Dortmund, LS2 Informatik, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 April 2013
Received in revised form 4 October 2013
Accepted 4 November 2013
Available online 7 November 2013
Communicated by M. Yamashita

Keywords:
Analysis of algorithms
Computational complexity
Ordered binary decision diagrams

In 1986 in his seminal paper Bryant has introduced Ordered Binary Decision Diagrams
(OBDDs) as a dynamic data structure for the representation and manipulation of Boolean
functions which allow efficient algorithms for important operations like synthesis, the
combination of two Boolean functions by a Boolean operator, and equivalence checking.
Based on his empirical evaluation he has conjectured that his apply algorithm for the
synthesis works in linear time with respect to the input and output size. Recently in
2012, Yoshinaka et al. have presented a counterexample which contradicts this conjecture
but their example has the drawback that the chosen variable ordering for the OBDD
representation of the input and output is bad. Therefore, they have raised the question
whether Bryant’s conjecture may still stand for reasonable variable orderings. Here,
a negative answer is given by presenting a simple counterexample which works for such
kind of variable orderings.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many areas in computer science, problems can be
formulated in terms of Boolean functions. Ordered Bi-
nary Decision Diagrams, or OBDDs for short, introduced by
Bryant in [4], are well suited for the representation and
manipulation of Boolean functions. Therefore, they are a
common dynamic data structure. Bryant has presented the
most important algorithms for the manipulation of OBDDs,
also including minimization. In order to understand the
behavior of the algorithms their resource requirements
have to be analyzed. The synthesis, the combination of two
Boolean functions by a Boolean operator, is a key opera-
tion, e.g., the transformation of a logical description of a
function like a circuit into an OBDD representation is done
by a sequence of binary synthesis steps. In this paper we
take a closer look at Bryant’s apply algorithm for the syn-
thesis operation. (For all formal definitions see Section 2.)

Because of the similarity between Deterministic Finite
Automata, or DFAs for short, and OBDDs with respect to

1 The author is supported by DFG project BO 2755/1.

the identity permutation, a lot of knowledge on DFAs can
be transferred to OBDDs. Let f and g be Boolean func-
tions and let G f and G g be OBDDs with respect to the
variable ordering π , or π -OBDDs for short, for f and g , re-
spectively. Given a binary Boolean operation ⊗, like the ∧-
or ∨-operation (conjunction or disjunction), Bryant’s ap-
ply algorithm computes a π -OBDD Gh for the function h
defined as h := f ⊗ g in time and space O(|G f | · |G g |),
where |G| denotes the size of the OBDD G . The size of
the π -OBDD Gh for h is bounded above by O(|G f | · |G g |).
The idea of the procedure is to apply the synthesis algo-
rithm for DFAs, to avoid the consideration of nodes not
reachable from the source, and to take into account that
some variables may be left out. Already Bryant has pre-
sented an example which shows that the result h may
indeed need π -OBDD size Θ(|G f | · |G g |). Therefore, from a
worst case point of view this solution is optimal. Bryant’s
example has the drawback that the chosen variable order-
ing is bad for the functions f , g , and h and therefore, such
a synthesis step is very unlikely to occur in applications.
Wegener has improved Bryant’s result by the construction
of functions f and g for which the π -OBDD size for h is
even Θ(|G f | · |G g |) if π is a variable ordering which leads

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.11.003

http://dx.doi.org/10.1016/j.ipl.2013.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2013.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.11.003&domain=pdf

B. Bollig / Information Processing Letters 114 (2014) 124–129 125

to OBDDs of minimal size for f and g (see Theorem 3.3.7
in [7]). Nowadays there are several BDD packages avail-
able and almost all of them are influenced by the early
implementation of Brace, Rudell, and Bryant [3]. Most of
the OBDD packages start to look for a better variable or-
dering if a binary step leads to a π -OBDD much larger
than the given π -OBDDs (see, e.g., [6]). As a result, the
main step of an OBDD package is a binary synthesis step
followed by a so-called reordering. The worst case behav-
ior of the synthesis operation has been investigated more
closely in [2] and a function h has been presented such
that the size of any π ′-OBDD for h is Ω(|G f | · |G g |) for
functions f and g essentially depending on all consid-
ered variables. Here, π ′ is an arbitrary variable ordering. In
other words, the function h may need an OBDD represen-
tation of size Ω(|G f | · |G g |) even if we choose an optimal
variable ordering for h. Nevertheless, in many cases, in par-
ticular in real life applications, even the π -OBDD Gh will
not be much larger than G f and G g . Hence, Bryant has
raised the question whether his algorithm is output sensi-
tive, i.e., efficient with respect to |G f |, |G g |, and |Gh|. Very
recently, Yoshinaka et al. [8] have presented a counter-
example which proves that the worst case complexity of
the apply algorithm is Ω(|G f | · |G g |) even if the π -OBDD
size of h is linear in the π -OBDD size of f and g . Again
this example has the drawback that the chosen variable or-
dering π is far from optimal and they have concluded that
Bryant’s conjecture might still stand if a reasonable vari-
able ordering is used. Here, a negative answer is given by
presenting a counterexample which works for variable or-
derings which are very good, i.e., variable orderings which
lead to OBDDs whose size is asymptotically equal to the
size of optimal OBDDs for the considered functions. Note
that we do not use new methods but the main contri-
bution is the construction of the very simple functions f
and g .

The rest of the paper is organized as follows. In Sec-
tion 2 we define some notation and basics concerning
OBDDs and Bryant’s apply algorithm. Section 3 contains
our counterexamples for the ∧- and ∨-operations which
prove that the apply algorithm does not work in linear
time with respect to input and output size even if the
functions f and g are represented by OBDDs of asymp-
totically optimal size. We finish the paper with two open
questions.

2. Preliminaries

In this section we briefly recall basics concerning
OBDDs and the apply procedure for the combination of
two Boolean functions by a Boolean operator already pre-
sented in Bryant’s seminal paper [4].

OBDDs. OBDDs are a very popular dynamic data struc-
ture in areas working with Boolean functions, like circuit
verification or model checking. (For a history of results on
binary decision diagrams see, e.g., [7].)

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean vari-
ables. A variable ordering π on Xn is a permutation on
{1, . . . ,n} leading to the ordered list xπ(1), . . . , xπ(n) of the

variables. A π -OBDD on Xn is a directed acyclic graph
G = (V , E) whose sinks are labeled by the Boolean con-
stants 0 and 1 and whose non-sink (or decision) nodes
are labeled by Boolean variables from Xn . Each decision
node has two outgoing edges, one labeled by 0 and the
other by 1. The edges between decision nodes have to re-
spect the variable ordering π , i.e., if an edge leads from
an xi -node to an x j -node, then π−1(i) < π−1(j). Let Bn
be the class of all Boolean functions from {0,1}n to {0,1}.
Each node v represents a Boolean function f v ∈ Bn defined
in the following way. A c-sink, c ∈ {0,1}, represents the
constant function c. If f v0 and f v1 are the functions repre-
sented at the 0- or 1-successor of v , resp., and v is labeled
by xi , then f v = xi f v0 ∨ xi f v1 (Shannon’s decomposition
rule). The size of a π -OBDD G , denoted by |G|, is equal to
the number of its nodes. A π -OBDD of minimal size for a
given function f and a fixed variable ordering π is unique
up to isomorphism. A π -OBDD for a function f is called
reduced if it is the minimal π -OBDD for f . The π -OBDD
size of a function f , denoted by π -OBDD(f), is the size
of the reduced π -OBDD representing f . An OBDD is a
π -OBDD for an arbitrary variable ordering π . The OBDD
size of f , denoted by OBDD(f), is the minimum of all
π -OBDD(f).

The number of nodes in the reduced π -OBDD repre-
senting f is described by the following structure theo-
rem [5].

Theorem 2. The number of xπ(i)-nodes of the reduced π -OBDD
for f is the number si of different subfunctions

f |xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . ,ai−1 ∈ {0,1},
that essentially depend on xπ(i) (a function g depends essen-
tially on a Boolean variable z if g|z=0 �= g|z=1).

The most important issue of OBDDs is the possibility to
choose the variable ordering. Depending of this choice the
size of an OBDD representing a function f , defined on n
Boolean variables and essentially dependent on all of them,
may vary between linear and exponential size with respect
to n. The most significant bit of binary addition or the di-
rect storage access or multiplexer function are examples
for such functions. Therefore, it is an important problem in
applications to choose a suitable variable ordering.

Definition 3. Let f = (fn) be a sequence of Boolean func-
tions, where fn : {0,1}n → {0,1}, and π = (πn) be a se-
quence of variable orderings πn , where πn is a permu-
tation on {1, . . . ,n} and n ∈ N. A sequence π is called
optimal for f if πn-OBDD(fn) = OBDD(fn) for all n ∈ N.
A sequence of variable orderings π is called bad for f if
the quotient of πn-OBDD(fn) and OBDD(fn) is exponential
with respect to n for all n ∈ N. It is called very good for
f if πn-OBDD(fn) is at most a constant factor larger than
OBDD(fn) for all n ∈N.

By abuse of notation we often speak about functions
and variable orderings instead of sequences of functions
and variable orderings and identify a variable ordering on

Download English Version:

https://daneshyari.com/en/article/427419

Download Persian Version:

https://daneshyari.com/article/427419

Daneshyari.com

https://daneshyari.com/en/article/427419
https://daneshyari.com/article/427419
https://daneshyari.com

