
Information Processing Letters 114 (2014) 152–157

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Efficient multiple-precision integer division algorithm

Debapriyay Mukhopadhyay a, Subhas C. Nandy b,∗
a IXIA Technologies Pvt. Ltd., Kolkata 700091, India
b Indian Statistical Institute, Kolkata 700108, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 February 2013
Received in revised form 3 October 2013
Accepted 19 October 2013
Available online 25 October 2013
Communicated by Jinhui Xu

Keywords:
Division algorithm
Normalization
Computational arithmetic
Cryptography

Design and implementation of division algorithm is one of the most complicated problems
in multi-precision arithmetic. Huang et al. [1] proposed an efficient multi-precision integer
division algorithm, and experimentally showed that it is about three times faster than the
most popular algorithms proposed by Knuth [2] and Smith [3]. This paper reports a bug in
the algorithm of Huang et al. [1], and suggests the necessary corrections. The theoretical
correctness proof of the proposed algorithm is also given. The resulting algorithm remains
as fast as that of [1].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Arithmetic operations on large integers are often used
in cryptographic algorithms. The usual arithmetic oper-
ations are performed in the machine using the built-in
functions. Each machine has a base B in its number sys-
tem, and can store unsigned integers of values {0,1,2,

. . . , B − 1} in built-in integer locations for that machine.
The time complexity of a single usual arithmetic operation
is assumed to be O (1).

A large integer cannot be stored in machine dependent
built-in size for integers, and arithmetic operations on such
integer(s) cannot be performed using the built-in routines
for those arithmetic operations. The operations on large in-
tegers are called multi-precision arithmetic operations. The
multi-precision division is the hardest among all the four
multi-precision arithmetic operations. Multi-precision divi-
sion plays a crucial role in cryptographic research [4], and
primality testing [5]. The commonly used multi-precision
division algorithm is proposed by Knuth [2].

Normalization is one of the key steps of multi-precision
division, and it is defined as the act of restoring the

* Corresponding author.
E-mail addresses: debapriyaym@gmail.com (D. Mukhopadhyay),

nandysc@isical.ac.in (S.C. Nandy).

individual digits or words in the range [0, B − 1]. Since
each word or digit of the quotient is guessed in each step
of the division, so it is difficult to skip normalization. The
division algorithm proposed by Smith [3] reduces the in-
termediate normalization steps. Huang et al. [1] proposed
an efficient algorithm for multi-precision integer division
that reduces the number of normalizations to a single nor-
malization step. The uniqueness of the algorithm is that,
if it is applied for long integer division, then both the quo-
tient and remainder simultaneously gets calculated at the
end. There is no need for any correction step or any extra
multiplication or subtraction for computing the remain-
der. It is experimentally shown that the algorithm in [1]
is three times faster than the algorithm by Knuth [2].

We have identified a bug in the algorithm by Huang
et al. [1], and propose the necessary corrections. We theo-
retically justify the correctness of our algorithm. The de-
tailed experiment justifies that our corrected version of
the algorithm runs with the same efficiency as suggested
in [1].

The paper is organized as follows. Section 2 briefly de-
scribes the algorithm of Huang et al. [1]. In Section 3,
we report the bug by providing an example. We describe
the corrected algorithm in Section 4, and also provide the
correctness proof. Finally, the concluding remarks appear
in Section 5.

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.10.005

http://dx.doi.org/10.1016/j.ipl.2013.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:debapriyaym@gmail.com
mailto:nandysc@isical.ac.in
http://dx.doi.org/10.1016/j.ipl.2013.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.10.005&domain=pdf

D. Mukhopadhyay, S.C. Nandy / Information Processing Letters 114 (2014) 152–157 153

2. Overview of the algorithm of [1]

Let B be the base of the multi-precision integers under
consideration. For two multi-precision positive integers a
and b (a > b > 0), we need to find out multi-precision in-
tegers q and r such that a = bq + r. Let m and n denote
the number of words required to store a and b respec-
tively. Thus a = a1 + a2.B + · · · + am.Bm−1 and b = b1 +
b2.B + · · · + bn.Bn−1. Algorithm starts by copying a into a
work array W of size m + 1, whose each element can hold
integers that require no more than 4 bytes, i.e., it ranges
from −2 147 483 648 to 2 147 483 647 in decimal number
system. We use a work array W for the division, and use
a variable MAX that contains the integer 2 147 483 648.
A zero digit is put at W [0]; then the digits of a are stored
in successive locations starting from the most significant
digit am at W [1], followed by am−1 at W [2] and so on.
In this way, a1 will be stored at W [m]. Similarly, the dig-
its b1,b2, . . . ,bn are stored in b[n − 1],b[n − 2], . . . ,b[0] of
the array b. The work array W is updated during the it-
eration process and there are chances of overflow in some
elements of W during the execution. So, normalization is
required to restore the digits in the range [0, B − 1]. At the
end of the algorithm the least significant n elements of W
gives the remainder r and the most significant m−n+1 el-
ements correspond to the quotient q. Algorithm 1 gives an
intuitive description of the algorithm of [1] assuming that
the working register and the arithmetic circuit for divi-
sion of the computer can handle the three digited numbers
with base B . For detailed description of this algorithm,
see [1].

Algorithm 1. Multi-precision_Division.

1. (* Form the denominator of division using first two consecutive
elements of b *)

Compute D = b[0] ∗ B + b[1]
2. for i = 0,1,2, . . . ,m − n do (* i indicates the iteration number. *)
3. (* Form the numerator using three consecutive elements

W [i], W [i + 1] and W [i + 2] *)
Compute N = W [i] ∗ B2 + W [i + 1] ∗ B + W [i + 2]

(* Assume that N can store a number less than B4. *)
4. Compute the quotient Q = � N

D �
5. (* Update the array W *)

for j = 1 to n do
W [i + j] = W [i + j] − Q .b[j − 1]

endfor
6. W [i + 1] = W [i] ∗ B + W [i + 1]
7. W [i] = Q (* Put Q in W [i] *)
8. endfor
9. Normalize W
10. Report the quotient and remainder from the array W .

Now, we describe the normalization procedure as pro-
posed in [1]. Here the objective is to consider each word
of the quotient and remainder, and restore its value in
the range [0, B − 1]. The main idea of the normaliza-
tion procedure centers around finding a multiplicative fac-
tor c such that when c ∗ B is added with the content
of an element in the array W , it will lie in the range
[0, B − 1]. For a negative word, the algorithm finds a pos-
itive c, and for a word greater than B , the algorithm finds
a negative c, to appropriately adjust the word. If a word
W [i] gets adjusted, then its immediate next higher word
W [i − 1] needs to be adjusted so that the value remains

unchanged. Next, W [i − 1] is considered for normalization.
The normalization procedure described in [1] is stated be-
low.

Algorithm 2. Normalize (X).

1. for i = m,m − 1,m − 2, . . . ,1 do (* i indicates the iteration number *)
2. c = 0
3. if (X[i] < 0) then c = �(−X[i] − 1)/B� + 1
4. else if (X[i] � B) then c = −�X[i]/B�
5. end if
6. X[i] = X[i] + c ∗ B
7. X[i − 1] = X[i − 1] − c
8. endfor

We now describe two interesting properties of the
normalization procedure of [1]. Let X be an array con-
taining a multi-precision number obtained by the Multi-
precision_Division algorithm prior to the normalization
(i.e., the array W after Step 8). Thus, X = (X[l − 1] + X[l −
2].B + · · · + X[0].Bl−1), where l is the number of words
in X . We now define

Vall−i =
i∑

j=1

X[l − j].B j−1, for i = 1,2, . . . , l. (1)

Observe that, Val0 = X . It needs to be mentioned that
Vali ’s, for i = 0,1,2, . . . , l−1, need not be computed/stored
in the algorithm. This only helps in characterizing which
indices of the array X requires normalization.

Property 1. For each i = l − 1, l − 2, . . . ,1, if either Vali < 0
or Vali � Bi , then the normalization is required for X[i]. The
normalization factor c is positive if Vali < 0 and negative if
Vali � Bi .

Property 2. For any value of i ∈ {1,2, . . . , l − 1}, if the nor-
malization is not required for X[i], then Vali remains un-
altered after the normalization. Since normalization algo-
rithm described above doesn’t normalize the location X[0],
Val0(= X) remains same before and after the normaliza-
tion.

Let us demonstrate the algorithm with a small example
in Table 1. Here B = 10, a = 60 541, b = 432; thus m = 5
and n = 3. We show the iterations of the for loop of Step 2
of the algorithm Multi-precision_Division in Table 1 and
also show the outcome of the normalization step of the
algorithm of Huang et al. [1]. Note that, D remains equal
to 43 throughout the execution.

After the normalization step, the higher order m −n + 1
words form the quotient and the remaining n words form
the remainder. Therefore, for the above example quotient
q = 140 and remainder r = 61. But the above normaliza-
tion procedure may lead to an incorrect result as described
in the next section.

3. Description of the bug

In [1], the correctness of the algorithm (i.e., whether
a = b.q + r holds) is not established. We could identify
a pathological instance to show that the algorithm of

Download English Version:

https://daneshyari.com/en/article/427424

Download Persian Version:

https://daneshyari.com/article/427424

Daneshyari.com

https://daneshyari.com/en/article/427424
https://daneshyari.com/article/427424
https://daneshyari.com

