Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Parameterized algorithms for load coloring problem

Gregory Gutin*, Mark Jones

Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK

ARTICLE INFO

Article history: Received 8 August 2013 Received in revised form 10 March 2014 Accepted 19 March 2014 Available online 24 March 2014 Communicated by J. Torán

Keywords: Design of algorithms Fixed-parameter tractable Kernel Load coloring

ABSTRACT

One way to state the Load Coloring Problem (LCP) is as follows. Let G = (V, E) be graph and let $f : V \to \{\text{red, blue}\}$ be a 2-coloring. An edge $e \in E$ is called red (blue) if both end-vertices of e are red (blue). For a 2-coloring f, let r'_f and b'_f be the number of red and blue edges and let $\mu_f(G) = \min\{r'_f, b'_f\}$. Let $\mu(G)$ be the maximum of $\mu_f(G)$ over all 2-colorings.

We introduce the parameterized problem *k*-LCP of deciding whether $\mu(G) \ge k$, where *k* is the parameter. We prove that this problem admits a kernel with at most 7*k*. Ahuja et al. (2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We generalize this by showing that an optimal 2-coloring on graphs with tree decomposition of width *t* can be found in time $O^*(2^t)$. We also show that either *G* is a Yes-instance of *k*-LCP or the treewidth of *G* is at most 2*k*. Thus, *k*-LCP can be solved in time $O^*(4^k)$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G = (V, E) with *n* vertices, *m* edges and maximum vertex degree Δ , the load distribution of a 2-coloring $f: V \to \{\text{red}, \text{blue}\}$ is a pair (r_f, b_f) , where r_f is the number of edges with at least one end-vertex colored red and b_f is the number of edges with at least one end-vertex colored blue. We wish to find a coloring f such that the function $\lambda_f(G) := \max\{r_f, b_f\}$ is minimized. We will denote this minimum by $\lambda(G)$ and call this problem LOAD COLORING PROBLEM (LCP). The LCP arises in Wavelength Division Multiplexing, the technology used for constructing optical communication networks [1,9]. Ahuia et al. [1] proved that the problem is NP-hard and gave a polynomial time algorithm for optimal colorings of trees. For graphs *G* with genus g > 0, Ahuja et al. [1] showed that a 2-coloring f such that $\lambda_f(G) \leq \lambda(G)(1+o(1))$ can be computed in $O(n + g \log n)$ -time, if the maximum degree satisfies $\Delta = o(\frac{m^2}{ng})$ and an embedding is given.

* Corresponding author.

http://dx.doi.org/10.1016/j.ipl.2014.03.008 0020-0190/© 2014 Elsevier B.V. All rights reserved. For a 2-coloring $f: V \to \{\text{red}, \text{blue}\}$, let r'_f and b'_f be the number of edges whose end-vertices are both red and blue, respectively (we call such edges *red* and *blue*, respectively). Let $\mu_f(G) := \min\{r'_f, b'_f\}$ and let $\mu(G)$ be the maximum of $\mu_f(G)$ over all 2-colorings of *V*. It is not hard to see (and it is proved in Remark 1.1 of [1]) that $\lambda(G) = m - \mu(G)$ and so the LCP is equivalent to maximizing $\mu_f(G)$ over all 2-colorings of *V*.

In this paper we introduce and study the following parameterization of LCP.

k-Load Coloring Problem (k-LCP)	
Input:	A graph $G = (V, E)$ and an integer k.
Parameter:	k
Question:	Is $\mu(G) \ge k$? (Equivalently, is
	$\lambda(G) \leqslant m - k?)$

We provide basics on parameterized complexity and tree decompositions of graphs in the next section. In Section 3, we show that k-LCP admits a kernel with at most 7k vertices. Interestingly, to achieve this linear bound, only two simple reduction rules are used. In Section 4, we generalize the result of Ahuja et al. [1] on trees by showing

CrossMark

E-mail addresses: gutin@cs.rhul.ac.uk (G. Gutin), markj@cs.rhul.ac.uk (M. Jones).

that an optimal 2-coloring for graphs with tree decomposition of width *t* can be obtained in time $2^t n^{O(1)}$. We also show that either *G* is a Yes-instance of *k*-LCP or the treewidth of *G* is at most 2*k*. As a result, *k*-LCP can be solved in time $4^k n^{O(1)}$. We conclude the paper in Section 5 by stating some open problems.

2. Basics on fixed-parameter tractability, kernelization and tree decompositions

A parameterized problem is a subset $L \subseteq \Sigma^* \times \mathbb{N}$ over a finite alphabet Σ . *L* is *fixed-parameter tractable* if the membership of an instance (x, k) in $\Sigma^* \times \mathbb{N}$ can be decided in time $f(k)|x|^{O(1)}$, where *f* is a function of the parameter *k* only. It is customary in parameterized algorithms to often write only the exponential part of f(k): $O^*(t(k)) := O(t(k)(kn)^{O(1)})$.

Given a parameterized problem *L*, a *kernelization of L* is a polynomial-time algorithm that maps an instance (x, k)to an instance (x', k') (the *kernel*) such that (i) $(x, k) \in L$ if and only if $(x', k') \in L$, (ii) $k' \leq g(k)$, and (iii) $|x'| \leq g(k)$ for some function *g*. The function g(k) is called the *size* of the kernel.

It is well-known that a parameterized problem L is fixed-parameter tractable if and only if it is decidable and admits a kernelization. Due to applications, low degree polynomial size kernels are of main interest. Unfortunately, many fixed-parameter tractable problems do not have kernels of polynomial size unless the polynomial hierarchy collapses to the third level, see, e.g., [2–4]. For further background and terminology on parameterized complexity we refer the reader to the monographs [5,6,8].

Definition 1. A *tree decomposition* of a graph G = (V, E) is a pair $(\mathcal{X}, \mathcal{T})$, where $\mathcal{T} = (I, F)$ is a tree and $\mathcal{X} = \{X_i: i \in I\}$ is a collection of subsets of *V* called *bags*, such that:

- 1. $\bigcup_{i \in I} X_i = V$;
- 2. For every edge $xy \in E$, there exists $i \in I$ such that $\{x, y\} \subseteq X_i$;
- 3. For every $x \in V$, the set $\{i: x \in X_i\}$ induces a connected subgraph of \mathcal{T} .

The width of $(\mathcal{T}, \mathcal{X})$ is $\max_{i \in I} |X_i| - 1$. The treewidth of a graph *G* is the minimum width of all tree decompositions of *G*.

To distinguish between vertices of G and \mathcal{T} , we call vertices of \mathcal{T} nodes. We will often speak of a bag X_i interchangeably with the node i to which it corresponds in \mathcal{T} . Thus, for example, we might say two bags are *neighbors* if they correspond to nodes in \mathcal{T} which are neighbors. We define the *descendants* of a bag X_i as follows: every child of X_i is a descendant of X_i , and every child of a descendant of X_i is a descendant of X_i .

Definition 2. A nice tree decomposition of a graph G = (V, E) is a tree decomposition $(\mathcal{X}, \mathcal{T})$ such that \mathcal{T} is a rooted tree, and each node *i* falls under one of the following classes:

- *i* is a Leaf node: Then *i* has no children;
- *i* is an Introduce node: Then *i* has a single child *j*, and there exists a vertex v ∉ X_j such that X_i = X_j ∪ {v};
- *i* is a Forget node: Then *i* has a single child *j*, and there exists a vertex $v \in X_j$ such that $X_i = X_j \setminus \{v\}$;
- *i* is a Join node: Then *i* has two children *h* and *j*, and $X_i = X_h = X_j$.

It is known that any tree decomposition of a graph can be transformed into a nice tree decomposition of the same width.

Lemma 1. (See [7].) Given a tree decomposition with O(n) nodes of a graph *G* with *n* vertices, we can construct, in time O(n), a nice tree decomposition of *G* of the same width and with at most 4*n* nodes.

3. Linear kernel

For a vertex v of a graph G = (V, E) and set $X \subseteq V$, let $\deg_X(v)$ denote the number of neighbors of v in X. If X = V, we will write $\deg(v)$ instead of $\deg_V(v)$.

Lemma 2. Let G = (V, E) be a graph with no isolated vertices, with maximum degree $\Delta \ge 2$ and let $|V| \ge 5k$. If $|V| \ge 4k + \Delta$, then (G, k) is a Yes-instance of k-LCP.

Proof. Suppose that $|V| \ge 4k + \Delta$, but (G, k) is a No-instance of *k*-LCP.

Let *M* be a maximum matching in *G* and let *Y* be the set of vertices which are not end-vertices of edges in *M*. If *M* has at least 2k edges, then we may color half of them blue and half of them red, so we conclude that |M| < 2k.

For an edge e = uv in M, let $\deg_Y(e) = \deg_Y(u) + \deg_Y(v)$, that is the number of edges between a vertex in Y and a vertex of e.

Claim. For any *e* in *M*, deg_{*Y*}(*e*) $\leq \max{\Delta - 1, 2}$.

Proof of Claim. Suppose that $\deg_Y(e) \ge \Delta$ and let e = uv. As u and v are adjacent, $d_Y(u)$ and $d_Y(v)$ are each less than Δ . But as $\deg_Y(u) + \deg_Y(v) = \deg_Y(e) \ge \Delta$, it follows that $\deg_Y(u) \ge 1$ and $\deg_Y(v) \ge 1$. Then either u and v have only one neighbor in Y, which is adjacent to both of them (in which case $\deg_Y(e) = 2$), or there exist vertices $x \ne y \in Y$ such that x is adjacent to u and y is adjacent to v. Then M is not a maximum matching, as xuvy is an augmenting path, which proves the claim. \Box

Now let M' be a subset of edges of M such that

$$\sum_{e'\in M'} \deg_Y(e') \ge k - |M'|,\tag{1}$$

and

$$\left[\sum_{e' \in M'} \deg_Y(e')\right] - \deg_Y(e) < k - |M'|, \quad \text{for any } e \in M'.$$
(2)

Download English Version:

https://daneshyari.com/en/article/427454

Download Persian Version:

https://daneshyari.com/article/427454

Daneshyari.com