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One way to state the Load Coloring Problem (LCP) is as follows. Let G = (V , E) be graph
and let f : V → {red,blue} be a 2-coloring. An edge e ∈ E is called red (blue) if both
end-vertices of e are red (blue). For a 2-coloring f , let r′

f and b′
f be the number of red

and blue edges and let μ f (G) = min{r′
f ,b′

f }. Let μ(G) be the maximum of μ f (G) over all
2-colorings.
We introduce the parameterized problem k-LCP of deciding whether μ(G) � k, where k is
the parameter. We prove that this problem admits a kernel with at most 7k. Ahuja et al.
(2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We
generalize this by showing that an optimal 2-coloring on graphs with tree decomposition
of width t can be found in time O ∗(2t). We also show that either G is a Yes-instance of
k-LCP or the treewidth of G is at most 2k. Thus, k-LCP can be solved in time O ∗(4k).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G = (V , E) with n vertices, m edges and
maximum vertex degree �, the load distribution of a
2-coloring f : V → {red,blue} is a pair (r f ,b f ), where r f
is the number of edges with at least one end-vertex col-
ored red and b f is the number of edges with at least
one end-vertex colored blue. We wish to find a coloring
f such that the function λ f (G) := max{r f ,b f } is mini-
mized. We will denote this minimum by λ(G) and call this
problem Load Coloring Problem (LCP). The LCP arises in
Wavelength Division Multiplexing, the technology used for
constructing optical communication networks [1,9]. Ahuja
et al. [1] proved that the problem is NP-hard and gave a
polynomial time algorithm for optimal colorings of trees.
For graphs G with genus g > 0, Ahuja et al. [1] showed
that a 2-coloring f such that λ f (G) � λ(G)(1 + o(1)) can
be computed in O (n + g log n)-time, if the maximum de-
gree satisfies � = o(m2

ng ) and an embedding is given.
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For a 2-coloring f : V → {red,blue}, let r′
f and b′

f be
the number of edges whose end-vertices are both red and
blue, respectively (we call such edges red and blue, re-
spectively). Let μ f (G) := min{r′

f ,b′
f } and let μ(G) be the

maximum of μ f (G) over all 2-colorings of V . It is not
hard to see (and it is proved in Remark 1.1 of [1]) that
λ(G) = m −μ(G) and so the LCP is equivalent to maximiz-
ing μ f (G) over all 2-colorings of V .

In this paper we introduce and study the following pa-
rameterization of LCP.

k-Load Coloring Problem (k-LCP)
Input: A graph G = (V , E) and an integer k.
Parameter: k
Question: Is μ(G) � k? (Equivalently, is

λ(G) � m − k?)

We provide basics on parameterized complexity and
tree decompositions of graphs in the next section. In Sec-
tion 3, we show that k-LCP admits a kernel with at most
7k vertices. Interestingly, to achieve this linear bound, only
two simple reduction rules are used. In Section 4, we gen-
eralize the result of Ahuja et al. [1] on trees by showing
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that an optimal 2-coloring for graphs with tree decom-
position of width t can be obtained in time 2tnO (1) . We
also show that either G is a Yes-instance of k-LCP or the
treewidth of G is at most 2k. As a result, k-LCP can be
solved in time 4knO (1) . We conclude the paper in Section 5
by stating some open problems.

2. Basics on fixed-parameter tractability, kernelization
and tree decompositions

A parameterized problem is a subset L ⊆ Σ∗ × N over
a finite alphabet Σ . L is fixed-parameter tractable if the
membership of an instance (x,k) in Σ∗ × N can be de-
cided in time f (k)|x|O (1) , where f is a function of the
parameter k only. It is customary in parameterized algo-
rithms to often write only the exponential part of f (k):
O ∗(t(k)) := O (t(k)(kn)O (1)).

Given a parameterized problem L, a kernelization of L is
a polynomial-time algorithm that maps an instance (x,k)

to an instance (x′,k′) (the kernel) such that (i) (x,k) ∈ L if
and only if (x′,k′) ∈ L, (ii) k′ � g(k), and (iii) |x′| � g(k) for
some function g . The function g(k) is called the size of the
kernel.

It is well-known that a parameterized problem L is
fixed-parameter tractable if and only if it is decidable and
admits a kernelization. Due to applications, low degree
polynomial size kernels are of main interest. Unfortunately,
many fixed-parameter tractable problems do not have ker-
nels of polynomial size unless the polynomial hierarchy
collapses to the third level, see, e.g., [2–4]. For further
background and terminology on parameterized complexity
we refer the reader to the monographs [5,6,8].

Definition 1. A tree decomposition of a graph G = (V , E) is a
pair (X ,T ), where T = (I, F ) is a tree and X = {Xi: i ∈ I}
is a collection of subsets of V called bags, such that:

1.
⋃

i∈I Xi = V ;
2. For every edge xy ∈ E , there exists i ∈ I such that

{x, y} ⊆ Xi ;
3. For every x ∈ V , the set {i: x ∈ Xi} induces a connected

subgraph of T .

The width of (T ,X ) is maxi∈I |Xi | − 1. The treewidth of a
graph G is the minimum width of all tree decompositions
of G .

To distinguish between vertices of G and T , we call
vertices of T nodes. We will often speak of a bag Xi inter-
changeably with the node i to which it corresponds in T .
Thus, for example, we might say two bags are neighbors if
they correspond to nodes in T which are neighbors. We
define the descendants of a bag Xi as follows: every child
of Xi is a descendant of Xi , and every child of a descen-
dant of Xi is a descendant of Xi .

Definition 2. A nice tree decomposition of a graph G =
(V , E) is a tree decomposition (X ,T ) such that T is a
rooted tree, and each node i falls under one of the follow-
ing classes:

• i is a Leaf node: Then i has no children;
• i is an Introduce node: Then i has a single child j, and

there exists a vertex v /∈ X j such that Xi = X j ∪ {v};
• i is a Forget node: Then i has a single child j, and

there exists a vertex v ∈ X j such that Xi = X j \ {v};
• i is a Join node: Then i has two children h and j, and

Xi = Xh = X j .

It is known that any tree decomposition of a graph can
be transformed into a nice tree decomposition of the same
width.

Lemma 1. (See [7].) Given a tree decomposition with O (n)

nodes of a graph G with n vertices, we can construct, in time
O (n), a nice tree decomposition of G of the same width and with
at most 4n nodes.

3. Linear kernel

For a vertex v of a graph G = (V , E) and set X ⊆ V ,
let degX (v) denote the number of neighbors of v in X . If
X = V , we will write deg(v) instead of degV (v).

Lemma 2. Let G = (V , E) be a graph with no isolated vertices,
with maximum degree �� 2 and let |V | � 5k. If |V | � 4k +�,
then (G,k) is a Yes-instance of k-LCP.

Proof. Suppose that |V | � 4k + �, but (G,k) is a No-
instance of k-LCP.

Let M be a maximum matching in G and let Y be the
set of vertices which are not end-vertices of edges in M . If
M has at least 2k edges, then we may color half of them
blue and half of them red, so we conclude that |M| < 2k.

For an edge e = uv in M , let degY (e) = degY (u) +
degY (v), that is the number of edges between a vertex in
Y and a vertex of e.

Claim. For any e in M, degY (e) � max{� − 1,2}.

Proof of Claim. Suppose that degY (e) � � and let e = uv .
As u and v are adjacent, dY (u) and dY (v) are each less
than �. But as degY (u)+degY (v) = degY (e)� �, it follows
that degY (u) � 1 and degY (v) � 1. Then either u and v
have only one neighbor in Y , which is adjacent to both of
them (in which case degY (e) = 2), or there exist vertices
x �= y ∈ Y such that x is adjacent to u and y is adjacent
to v . Then M is not a maximum matching, as xuv y is an
augmenting path, which proves the claim. �

Now let M ′ be a subset of edges of M such that∑
e′∈M ′

degY

(
e′) � k − |M ′|, (1)

and[ ∑
e′∈M ′

degY

(
e′)] − degY (e) < k − |M ′|, for any e ∈ M ′.

(2)
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