Parameterized algorithms for load coloring problem

Gregory Gutin *, Mark Jones
Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK

ARTICLE INFO

Article history:

Received 8 August 2013
Received in revised form 10 March 2014
Accepted 19 March 2014
Available online 24 March 2014
Communicated by J. Torán

Keywords:

Design of algorithms
Fixed-parameter tractable
Kernel
Load coloring

Abstract

One way to state the Load Coloring Problem (LCP) is as follows. Let $G=(V, E)$ be graph and let $f: V \rightarrow$ \{red, blue\} be a 2 -coloring. An edge $e \in E$ is called red (blue) if both end-vertices of e are red (blue). For a 2-coloring f, let r_{f}^{\prime} and b_{f}^{\prime} be the number of red and blue edges and let $\mu_{f}(G)=\min \left\{r_{f}^{\prime}, b_{f}^{\prime}\right\}$. Let $\mu(G)$ be the maximum of $\mu_{f}(G)$ over all 2-colorings. We introduce the parameterized problem k-LCP of deciding whether $\mu(G) \geqslant k$, where k is the parameter. We prove that this problem admits a kernel with at most $7 k$. Ahuja et al. (2007) proved that one can find an optimal 2-coloring on trees in polynomial time. We generalize this by showing that an optimal 2 -coloring on graphs with tree decomposition of width t can be found in time $O^{*}\left(2^{t}\right)$. We also show that either G is a Yes-instance of k-LCP or the treewidth of G is at most $2 k$. Thus, k-LCP can be solved in time $O^{*}\left(4^{k}\right)$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a graph $G=(V, E)$ with n vertices, m edges and maximum vertex degree Δ, the load distribution of a 2-coloring $f: V \rightarrow$ \{red, blue\} is a pair $\left(r_{f}, b_{f}\right)$, where r_{f} is the number of edges with at least one end-vertex colored red and b_{f} is the number of edges with at least one end-vertex colored blue. We wish to find a coloring f such that the function $\lambda_{f}(G):=\max \left\{r_{f}, b_{f}\right\}$ is minimized. We will denote this minimum by $\lambda(G)$ and call this problem load Coloring Problem (LCP). The LCP arises in Wavelength Division Multiplexing, the technology used for constructing optical communication networks [1,9]. Ahuja et al. [1] proved that the problem is NP-hard and gave a polynomial time algorithm for optimal colorings of trees. For graphs G with genus $g>0$, Ahuja et al. [1] showed that a 2-coloring f such that $\lambda_{f}(G) \leqslant \lambda(G)(1+o(1))$ can be computed in $O(n+g \log n)$-time, if the maximum degree satisfies $\Delta=o\left(\frac{m^{2}}{n g}\right)$ and an embedding is given.

[^0]For a 2-coloring $f: V \rightarrow$ \{red, blue\}, let r_{f}^{\prime} and b_{f}^{\prime} be the number of edges whose end-vertices are both red and blue, respectively (we call such edges red and blue, respectively). Let $\mu_{f}(G):=\min \left\{r_{f}^{\prime}, b_{f}^{\prime}\right\}$ and let $\mu(G)$ be the maximum of $\mu_{f}(G)$ over all 2 -colorings of V. It is not hard to see (and it is proved in Remark 1.1 of [1]) that $\lambda(G)=m-\mu(G)$ and so the LCP is equivalent to maximizing $\mu_{f}(G)$ over all 2-colorings of V.

In this paper we introduce and study the following parameterization of LCP.

```
k-Load Coloring Problem (k-LCP)
Input: A graph G=(V,E) and an integer k.
Parameter: k
Question: Is }\mu(G)\geqslantk\mathrm{ ? (Equivalently, is
    \lambda(G)\leqslantm-k?)
```

We provide basics on parameterized complexity and tree decompositions of graphs in the next section. In Section 3, we show that k-LCP admits a kernel with at most $7 k$ vertices. Interestingly, to achieve this linear bound, only two simple reduction rules are used. In Section 4, we generalize the result of Ahuja et al. [1] on trees by showing
that an optimal 2-coloring for graphs with tree decomposition of width t can be obtained in time $2^{t} n^{O(1)}$. We also show that either G is a Yes-instance of k-LCP or the treewidth of G is at most $2 k$. As a result, k-LCP can be solved in time $4^{k} n^{O(1)}$. We conclude the paper in Section 5 by stating some open problems.

2. Basics on fixed-parameter tractability, kernelization and tree decompositions

A parameterized problem is a subset $L \subseteq \Sigma^{*} \times \mathbb{N}$ over a finite alphabet Σ. L is fixed-parameter tractable if the membership of an instance (x, k) in $\Sigma^{*} \times \mathbb{N}$ can be decided in time $f(k)|x|^{O(1)}$, where f is a function of the parameter k only. It is customary in parameterized algorithms to often write only the exponential part of $f(k)$: $O^{*}(t(k)):=O\left(t(k)(k n)^{O(1)}\right)$.

Given a parameterized problem L, a kernelization of L is a polynomial-time algorithm that maps an instance (x, k) to an instance (x^{\prime}, k^{\prime}) (the kernel) such that (i) $(x, k) \in L$ if and only if (x^{\prime}, k^{\prime}) $\in L$, (ii) $k^{\prime} \leqslant g(k)$, and (iii) $\left|x^{\prime}\right| \leqslant g(k)$ for some function g. The function $g(k)$ is called the size of the kernel.

It is well-known that a parameterized problem L is fixed-parameter tractable if and only if it is decidable and admits a kernelization. Due to applications, low degree polynomial size kernels are of main interest. Unfortunately, many fixed-parameter tractable problems do not have kernels of polynomial size unless the polynomial hierarchy collapses to the third level, see, e.g., [2-4]. For further background and terminology on parameterized complexity we refer the reader to the monographs $[5,6,8]$.

Definition 1. A tree decomposition of a graph $G=(V, E)$ is a pair $(\mathcal{X}, \mathcal{T})$, where $\mathcal{T}=(I, F)$ is a tree and $\mathcal{X}=\left\{X_{i}: i \in I\right\}$ is a collection of subsets of V called bags, such that:

1. $\bigcup_{i \in I} X_{i}=V$;
2. For every edge $x y \in E$, there exists $i \in I$ such that $\{x, y\} \subseteq X_{i}$;
3. For every $x \in V$, the set $\left\{i: x \in X_{i}\right\}$ induces a connected subgraph of \mathcal{T}.

The width of $(\mathcal{T}, \mathcal{X})$ is $\max _{i \in I}\left|X_{i}\right|-1$. The treewidth of a graph G is the minimum width of all tree decompositions of G.

To distinguish between vertices of G and \mathcal{T}, we call vertices of \mathcal{T} nodes. We will often speak of a bag X_{i} interchangeably with the node i to which it corresponds in \mathcal{T}. Thus, for example, we might say two bags are neighbors if they correspond to nodes in \mathcal{T} which are neighbors. We define the descendants of a bag X_{i} as follows: every child of X_{i} is a descendant of X_{i}, and every child of a descendant of X_{i} is a descendant of X_{i}.

Definition 2. A nice tree decomposition of a graph $G=$ (V, E) is a tree decomposition $(\mathcal{X}, \mathcal{T})$ such that \mathcal{T} is a rooted tree, and each node i falls under one of the following classes:

- i is a Leaf node: Then i has no children;
- i is an Introduce node: Then i has a single child j, and there exists a vertex $v \notin X_{j}$ such that $X_{i}=X_{j} \cup\{v\}$;
- i is a Forget node: Then i has a single child j, and there exists a vertex $v \in X_{j}$ such that $X_{i}=X_{j} \backslash\{v\}$;
- i is a Join node: Then i has two children h and j, and $X_{i}=X_{h}=X_{j}$.

It is known that any tree decomposition of a graph can be transformed into a nice tree decomposition of the same width.

Lemma 1. (See [7].) Given a tree decomposition with $O(n)$ nodes of a graph G with n vertices, we can construct, in time $O(n)$, a nice tree decomposition of G of the same width and with at most $4 n$ nodes.

3. Linear kernel

For a vertex v of a graph $G=(V, E)$ and set $X \subseteq V$, let $\operatorname{deg}_{X}(v)$ denote the number of neighbors of v in X. If $X=V$, we will write $\operatorname{deg}(v)$ instead of $\operatorname{deg}_{V}(v)$.

Lemma 2. Let $G=(V, E)$ be a graph with no isolated vertices, with maximum degree $\Delta \geqslant 2$ and let $|V| \geqslant 5 k$. If $|V| \geqslant 4 k+\Delta$, then (G, k) is a Yes-instance of k-LCP.

Proof. Suppose that $|V| \geqslant 4 k+\Delta$, but (G, k) is a Noinstance of k-LCP.

Let M be a maximum matching in G and let Y be the set of vertices which are not end-vertices of edges in M. If M has at least $2 k$ edges, then we may color half of them blue and half of them red, so we conclude that $|M|<2 k$.

For an edge $e=u v$ in M, let $\operatorname{deg}_{Y}(e)=\operatorname{deg}_{Y}(u)+$ $\operatorname{deg}_{Y}(v)$, that is the number of edges between a vertex in Y and a vertex of e.

Claim. For any e in $M, \operatorname{deg}_{Y}(e) \leqslant \max \{\Delta-1,2\}$.
Proof of Claim. Suppose that $\operatorname{deg}_{Y}(e) \geqslant \Delta$ and let $e=u v$. As u and v are adjacent, $d_{Y}(u)$ and $d_{Y}(v)$ are each less than Δ. But as $\operatorname{deg}_{Y}(u)+\operatorname{deg}_{Y}(v)=\operatorname{deg}_{Y}(e) \geqslant \Delta$, it follows that $\operatorname{deg}_{Y}(u) \geqslant 1$ and $\operatorname{deg}_{Y}(v) \geqslant 1$. Then either u and v have only one neighbor in Y, which is adjacent to both of them (in which case $\operatorname{deg}_{Y}(e)=2$), or there exist vertices $x \neq y \in Y$ such that x is adjacent to u and y is adjacent to v. Then M is not a maximum matching, as xuvy is an augmenting path, which proves the claim.

Now let M^{\prime} be a subset of edges of M such that
$\sum_{e^{\prime} \in M^{\prime}} \operatorname{deg}_{Y}\left(e^{\prime}\right) \geqslant k-\left|M^{\prime}\right|$,
and
$\left[\sum_{e^{\prime} \in M^{\prime}} \operatorname{deg}_{Y}\left(e^{\prime}\right)\right]-\operatorname{deg}_{Y}(e)<k-\left|M^{\prime}\right|, \quad$ for any $e \in M^{\prime}$.

https://daneshyari.com/en/article/427454

Download Persian Version:
https://daneshyari.com/article/427454

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gutin@cs.rhul.ac.uk (G. Gutin), markj@cs.rhul.ac.uk (M. Jones).

