
Information Processing Letters 110 (2010) 1021–1025

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A filtering algorithm for k-mismatch with don’t cares

Raphaël Clifford a,∗, Ely Porat b

a University of Bristol, Dept. of Computer Science, Bristol, BS8 1UB, UK
b Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 September 2009
Received in revised form 3 August 2010
Accepted 24 August 2010
Available online 27 August 2010
Communicated by P.M.B. Vitányi

Keywords:
Algorithms
Design of algorithms
Combinatorial problems
String algorithms
Don’t cares
Pattern matching
Filtering
Fast Fourier transforms

We present a filtering based algorithm for the k-mismatch pattern matching problem with
don’t cares. Given a text t of length n and a pattern p of length m with don’t care symbols
in either p or t (but not both), and a bound k, our algorithm finds all the places that the
pattern matches the text with at most k mismatches. The algorithm is deterministic and
runs in Θ(nm1/3k1/3 log2/3 m) time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider approximate string matching under the
widely used Hamming distance. In particular our interest
is in a bounded version of this problem which we call k-
mismatch with don’t cares. Given a text t of length n and
a pattern p of length m, we allow either the pattern or
the text (but not both) to contain promiscuously matching
don’t care symbols. Given a bound k, our algorithm finds
all the locations where the pattern matches the text with
at most k mismatches. If the distance is greater than k, the
algorithm need only report that fact and not give the ac-
tual Hamming distance.

The problem of exact string matching is a classic one
in computer science whose linear time solutions were first
presented in the 1970s [4,15]. Determining the time com-
plexity of exact matching with optional single character
don’t care symbols has also been well studied. Fischer and

* Corresponding author.
E-mail addresses: clifford@cs.bris.ac.uk (R. Clifford),

porately@cs.biu.ac.il (E. Porat).

Paterson [12] presented the first solution based on fast
Fourier transforms (FFT) with an Θ(n log m log |Σ |) time
algorithm in 1974,1 where Σ is the alphabet that the
symbols are chosen from. Subsequently, the major chal-
lenge has been to remove this dependency on the alpha-
bet size. Indyk [13] gave a randomised Θ(n log n) time
algorithm which was followed by a simpler and slightly
faster Θ(n log m) time randomised solution by Kalai [14].
In 2002, the first deterministic Θ(n log m) time solution
was given [9] which was then further simplified in [7].

The key observation given by [7] but implicit in previ-
ous work is that for numeric strings, if there are no don’t
care symbols, then for all locations 1 � i � n − m + 1 we
can calculate

m∑
j=1

(p j − ti+ j−1)
2 =

m∑
j=1

(
p2

j − 2p jti+ j−1 + t2
i+ j−1

)
(1)

1 Throughout this paper we assume the word RAM model with multi-
plication when giving the time complexity of the FFT. This is in order to
be consistent with the large body of previous work on pattern matching
with FFTs.

0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.08.012

http://dx.doi.org/10.1016/j.ipl.2010.08.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:clifford@cs.bris.ac.uk
mailto:porately@cs.biu.ac.il
http://dx.doi.org/10.1016/j.ipl.2010.08.012

1022 R. Clifford, E. Porat / Information Processing Letters 110 (2010) 1021–1025

in a total of Θ(n log m) time using FFTs. Here p j indi-
cates the jth symbol in the input string p. The notation
holds similarly for ti in string t . Wherever there is an
exact match this sum will be exactly 0. If p and t are
not numeric, then an arbitrary one-to-one mapping can be
chosen from the alphabet to the set of positive integers N.
In the case of matching with don’t cares, each don’t care
symbol in p or t is replaced by a 0 and the sum is modi-
fied to be

m∑
j=1

p′
jt

′
i+ j−1(p j − ti+ j−1)

2

where p′
j = 0 (t′

i = 0) if p j (ti) is a don’t care symbol and
1 otherwise. This sum equals 0 if and only if there is an
exact match with don’t cares and can also be computed in
Θ(n log m) time using FFTs.

Approximate matching is one of the fundamental tools
of large scale data processing and is both widely studied
and used in practice. Errors or noise can occur in data in a
great variety of forms and so any search tool on real data
must be able to handle a level of approximation. In other
cases the data themselves are accurate but we might be
tasked for example, with searching for similarity between
images in a library or in the case of bioinformatics, a key
operation is to search for functional similarities between
genes or proteins. In some cases elements of the data are
simply unknown and should not be counted towards any
measure of similarity. Such data are often represented by
don’t care or wildcard symbols. As an example in image
processing, a rectangular image segment may contain a fa-
cial image and the objective is to identify the face in a
larger scene. However, background pixels around the faces
may be considered to be irrelevant for facial recognition
and these should not affect the search algorithm. Alterna-
tively, a consensus sequence derived from multiple align-
ment in computational biology (see e.g. [11]) may contain
unknown values and the aim is to perform approximate
matching rapidly on a large DNA or protein database with-
out penalising any matches to the unknown values. Due
to the asymmetry between query and database or pattern
and text it is often the case that uncertainty lies in either
the pattern or the text but not both. It is this model of ap-
proximate matching with don’t cares in either the pattern
or text that we consider here.

In Section 2 related and previous work is discussed. We
then formalise the pattern matching problem description
and give basic definitions that will be used throughout
in Section 3. In Section 4 we explain in detail why don’t
cares cause problems for traditional filtering algorithms
and present our main solution. Finally, in Section 5 we
conclude and discuss the open problems that remain to
be solved.

2. Related and previous work

Much progress has been made in finding fast algo-
rithms for the k-mismatch problem without don’t cares
over the last 20 years. Θ(n

√
m logm) time solutions to

the k-mismatch problem based on repeated applications
of the FFT were given independently by both Abrahamson

and Kosaraju in 1987 [1,16]. Their algorithms are in fact
independent of the bound k and report the Hamming dis-
tance at every position irrespective of its value. In 1985
Landau and Vishkin gave a beautiful Θ(nk) algorithm that
is not FFT based which uses constant time LCA operations
on the suffix tree of p and t [18]. This was subsequently
improved to Θ(n

√
k log k) time by a method based on fil-

tering and FFTs again [3]. Approximations within a mul-
tiplicative factor of (1 + ε) to the Hamming distance can
also be found in Θ(n/ε2 log m) time [13]. A variant of the
edit-distance problem (see e.g. [17]) called the k-difference
problem with don’t cares was considered in [2]. Progress
has also been made recently on the related problem of in-
dexing with errors and don’t cares [8,5].

To the authors’ knowledge, no non-naive algorithms
have been given to date for the k-mismatch pattern match-
ing problem with don’t cares. However, the Θ(n

√
m log m)

divide and conquer algorithms of Kosaraju and Abraham-
son [1,16] can be easily extended to handle don’t cares
in both the pattern and text without changing the over-
all time complexity. This is because the algorithm counts
matches and not mismatches. First we count the number
of non-don’t care matches in Θ(n

√
m logm) time. Then we

need only subtract this number from the maximum possi-
ble number of non-don’t care matches at a particular po-
sition in the text in order to count the mismatches. When
don’t cares are only allowed in only one of the pattern or
text this can be computed in linear time as we will show
in Section 4.

3. Problem definition and preliminaries

Let Σ be a set of characters which we term the alpha-
bet, and let φ be the don’t care symbol. Let t = t1t2 . . . tn ∈
Σn be the text and p = p1 p2 . . . pm ∈ Σm the pattern. Ei-
ther the pattern or the text may also include φ in their
alphabet but not both. The terms symbol and character are
used interchangeably throughout. Similarly, we will some-
times refer to a location in a string and synonymously at
other times the position. The term alignment will only be
used to refer to a position in the text.

– Define HD(i) to be the number of mismatches or Ham-
ming distance between p and t[i, . . . , i + m − 1] and
define the don’t care symbol to match any symbol in
the alphabet.

– Define

HDk(i) =
{

HD(i) if HD(i) � k,

⊥ otherwise.

– We say that at position i in t , p is a k-mismatch if
HDk(i) �= ⊥.

– Symbols other than don’t cares are said to be solid. We
say that a match between two solid symbols is a solid
match and we say that a position in the pattern or text
corresponding to a solid symbol is a solid position.

Our algorithms make extensive use of the fast Fourier
transform (FFT). An important property of the FFT is that
in the RAM model, the cross-correlation,

Download English Version:

https://daneshyari.com/en/article/427466

Download Persian Version:

https://daneshyari.com/article/427466

Daneshyari.com

https://daneshyari.com/en/article/427466
https://daneshyari.com/article/427466
https://daneshyari.com

