

Available online at www.sciencedirect.com

Information and Computation 204 (2006) 1139–1172

Information and Computation

www.elsevier.com/locate/ic

Terminal coalgebras and free iterative theories

Jiří Adámek*,1, Stefan Milius

Institute of Theoretical Computer Science, Technical University of Braunschweig, Germany

Received 16 December 2004 Available online 30 May 2006

Abstract

Every finitary endofunctor H of **Set** can be represented via a finitary signature Σ and a collection of equations called "basic". We describe a terminal coalgebra for H as the terminal Σ -coalgebra (of all Σ -trees) modulo the congruence of applying the basic equations potentially infinitely often. As an application we describe a free iterative theory on H (in the sense of Calvin Elgot) as the theory of all rational Σ -trees modulo the analogous congruence. This yields a number of new examples of iterative theories, e.g., the theory of all strongly extensional, rational, finitely branching trees, free on the finite power-set functor, or the theory of all binary, rational unordered trees, free on one commutative binary operation. © 2006 Elsevier Inc. All rights reserved.

Keywords: Terminal coalgebra; Rational tree; Iterative theory; Basic equation

1. Introduction

It is well-known that for any finitary signature Σ an initial Σ -algebra I_{Σ} is the algebra of all finite Σ -trees, and a terminal Σ -coalgebra T_{Σ} is the algebra of all (finite and infinite) Σ -trees. We now

^{*} Corresponding author.

Email addresses: J.Adamek@tu-bs.de (J. Adámek), milius@iti.cs.tu-bs.de (S. Milius).

¹ Support of the Ministry of Education of the Czech Republic MSM 6840770014 is acknowledged.

prove the analogous statement for every finitary endofunctor H of **Set**. First, we express H as a quotient of the polynomial functor H_{Σ} , given by

$$H_{\Sigma}X = \Sigma_0 + \Sigma_1 \times X + \Sigma_2 \times X^2 + \cdots$$

for some finitary signature Σ . In fact, being finitary (i.e., preserving directed colimits) is, for set functors, equivalent to being a quotient of some H_{Σ} . Moreover, the quotient is expressed by a collection of *basic equations*, i.e., equations of the form

$$\sigma(x_1,\ldots,x_n)=\varrho(y_1,\ldots,y_k),$$

where σ and ϱ are operation symbols and x_i and y_i are variables (not necessarily distinct).

Example: the finite-power-set functor \mathcal{P}_f is a quotient of the polynomial functor

$$H_{\Sigma}X = 1 + X + X^2 + \cdots$$

(of the signature Σ which has one *n*-ary operation σ_n for every $n \in \mathbb{N}$) via the basic equations

$$\sigma_n(x_1,\ldots,x_n)=\sigma_k(y_1,\ldots,y_k),$$

where *n* and *k* are arbitrary numbers and the variables are such that the set $\{x_1, \ldots, x_n\}$ is equal to $\{y_1, \ldots, y_k\}$.

Now given such a presentation of H, it is well known that an initial H-algebra I has the form

$$I = I_{\Sigma}/_{\sim}$$

where \sim is the congruence generated by the basic equations. That is, two finite Σ -trees t and s are congruent iff t can be obtained from s by a finite application of the basic equations. We prove below that a terminal H-coalgebra has the form

$$T = T_{\Sigma}/_{\sim^*}$$

where \sim^* is the congruence of finite and infinite applications of the basic equations. The infinite application has a simple definition, inspired by the description of the terminal \mathscr{P}_f -coalgebra provided by Barr [14]: Given infinite Σ -trees t and s denote by $\partial_k t$ and $\partial_k s$ the trees we obtain from them by cutting them at level k. Then we define \sim^* as follows:

$$t \sim^* s$$
 iff $\partial_k t \sim \partial_k s$ for all $k = 0, 1, 2, ...$

Example: a terminal \mathscr{P}_f -coalgebra is the coalgebra of all finitely branching strongly extensional trees, i.e., finitely branching unordered trees such that distinct children of every node define non-bisimilar subtrees, see [25]. The reason is that they form a choice class of the above congruence \sim^* : every unordered tree is congruent to a unique strongly extensional tree.

The main result of our paper is the above description of a terminal coalgebra for any finitary set functor H. From this we (easily) derive a concrete description of a free iterative theory \mathcal{R}_H on H. Iterative theories were introduced by Elgot [17] as a means of an algebraic description of infinite

Download English Version:

https://daneshyari.com/en/article/427473

Download Persian Version:

https://daneshyari.com/article/427473

<u>Daneshyari.com</u>