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A d-dimensional zeolite is a d-dimensional body-and-pin framework with a (d + 1)-regular
underlying graph G . That is, each body of the zeolite is incident with d + 1 pins and each
pin belongs to exactly two bodies. The corresponding d-dimensional combinatorial zeolite
is a bar-and-joint framework whose graph is the line graph of G .
We show that a two-dimensional combinatorial zeolite is generically globally rigid if and
only if its underlying 3-regular graph G is 3-edge-connected. The proof is based on a new
rank formula for the two-dimensional rigidity matroid of line graphs.
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1. Introduction

A d-dimensional zeolite is a d-dimensional body-and-pin
framework in which each body is incident with d + 1 pins
and each pin belongs to exactly two bodies. In the under-
lying graph G of the zeolite vertices correspond to bodies
and two vertices are adjacent if and only if the correspond-
ing bodies share a pin. Thus the underlying graph of the
zeolite is (d + 1)-regular.

By replacing the bodies by complete bar frameworks
one obtains a d-dimensional combinatorial zeolite. It is a bar-
and-joint framework whose graph is the line graph of the
underlying graph G of the zeolite. (The line graph L(G) of
a graph G = (V , E) is the simple graph with vertex set
{ve: e ∈ E}, where two vertices ve, v f are adjacent if and
only if e, f have a common end-vertex in G .) See Fig. 1 for
a two-dimensional example.

The investigation of these structures is motivated in
part by the existence (and flexibility properties) of real ze-
olites, which are molecules formed by corner-sharing tetra-
hedra, see e.g. [3]. Planar plate frameworks (which contain
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planar zeolites as a special case), in which the bodies are
pairwise congruent regular polygons, have also been stud-
ied in the rigidity literature [2]. The existence (or rigidity)
of a unit distance realization of a given zeolite (or zeo-
lites of a given size) without overlapping bodies is a re-
lated – and typically quite difficult – geometric question,
see e.g. [4]. In this paper we shall consider the combina-
torial aspects of zeolites and investigate (global) rigidity
properties of planar combinatorial zeolites in generic po-
sition.

Roughly speaking, a combinatorial zeolite is globally
rigid if its bar lengths uniquely determine the whole
framework, up to congruence. Brigitte Servatius and Her-
man Servatius [11] asked whether there is a simple neces-
sary and sufficient condition, in terms of its underlying
graph, for the global rigidity of a planar zeolite whose
vertices are in generic position. We shall give an affir-
mative answer in Section 3 by showing that a planar
combinatorial zeolite is generically globally rigid if and
only if its 3-regular underlying graph is 3-edge-connected.
The proof is based on a new rank formula for the two-
dimensional rigidity matroid of line graphs. This formula,
along with the necessary definitions, is given in Sec-
tion 2. The last section is devoted to some concluding
remarks.
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Fig. 1. A 3-regular graph G and its line graph L(G). The shaded triangles of the bar-and-joint framework on L(G) correspond to the bodies in the two-
dimensional zeolite whose underlying graph is G .

2. Rigidity of line graphs

We shall need the following basic notions of combina-
torial rigidity. For a detailed survey of the area we refer the
reader to [1,12,13]. A d-dimensional (bar-and-joint) frame-
work is a pair (G, p), where G = (V , E) is a graph and
p is a map from V to R

d . We also say that (G, p) is a
realization of G in R

d . We can think of the edges and ver-
tices of G in the framework as rigid (fixed length) bars
and universal joints, respectively. Two frameworks (G, p)

and (G,q) are equivalent if corresponding edges have the
same lengths, that is, if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖
holds for all pairs u, v with uv ∈ E , where ‖.‖ denotes the
Euclidean norm in R

d . Frameworks (G, p), (G,q) are con-
gruent if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for all pairs
u, v with u, v ∈ V . We shall say that (G, p) is globally rigid
if every framework which is equivalent to (G, p) is congru-
ent to (G, p).

Rigidity is a weaker property of frameworks than global
rigidity. Intuitively, a framework is rigid if it has no con-
tinuous deformations. Equivalently, and more formally, a
framework (G, p) is rigid if there exists an ε > 0 such that,
if (G,q) is equivalent to (G, p) and ‖p(u) − q(u)‖ < ε for
all v ∈ V , then (G,q) is congruent to (G, p).

A framework (G, p) is said to be generic if the set con-
taining the coordinates of all its points is algebraically
independent over the rationals. It is known that rigid-
ity as well as global rigidity are generic properties of d-
dimensional frameworks for all d, that is, the (global) rigid-
ity of a generic realization of a graph G depends only on
the graph G and not the particular realization. We say that
the graph G is rigid, respectively globally rigid, in R

d if ev-
ery (or equivalently, if some) generic realization of G in
R

d is rigid, respectively globally rigid. Many of the (global)
rigidity properties of a generic framework (G, p) are deter-
mined by an associated matroid, the d-dimensional rigidity
matroid Rd(G), defined on the edge set of G . We denote
the rank of Rd(G) by rd(G).

In what follows we shall focus on the case d = 2. In this
case rigidity and the rank function of the rigidity matroid
are well characterized. It is known that a graph G = (V , E)

is rigid in R
2 if and only if r2(G) = 2|V | − 3. It is also

known that the edge set of G is independent in R2(G)

if and only if each subset X ⊆ V with |X | � 2 induces at
most 2|X | − 3 edges [8]. Lovász and Yemini [9] character-
ized rigid graphs in R

2 by providing a formula for r2(G),
in terms of ‘thin covers’ of G . We shall use the following
refinement of their result, which uses rigid components,
see [1, Section 4.4]. We define a rigid component of a graph
G = (V , E) to be a maximal rigid subgraph of G . By the
glueing lemma (see [12, Lemma 3.1.4]), which says that the
union of two rigid graphs with at least two vertices in
common is rigid, it follows that any two rigid components
of G intersect in at most one vertex. Thus their vertex sets
form a special ‘thin cover’ of G .

Theorem 2.1. (See [1,9].) Let H = (V , E) be a graph with rigid
components H1, H2, . . . , Ht . Then

r2(H) =
t∑

i=1

(
2|Ci| − 3

)
,

where Ci = V (Hi), 1 � i � t.

Let G = (V , E) be a graph. For a family F of pairwise
disjoint subsets of V let EG(F ) denote the set, and eG(F )

the number, of edges of G connecting distinct members of
F . For a partition P of V let

defG(P) = 3
(|P| − 1

) − 2eG(P)

denote the deficiency of P in G and let

def(G) = max
{

defG(P): P is a partition of V
}
.

We say that a partition P of V is tight if defG(P ) = def(G)

holds. Note that def(G) � 0, since defG({V }) = 0. For ex-
ample, the graph G in Fig. 1 has def(G) = 1. The vertex
sets of the four disjoint copies of ‘K4 minus an edge’ in G
form a tight partition of G .

The following rank formula (which is implicit in [7])
shows that the ‘degree of freedom’ of L(G) is equal to the
deficiency of G .

Theorem 2.2. Let G = (V , E) be a graph with minimum degree
at least two. Then

r2
(
L(G)

) = 2|E| − 3 − def(G). (1)



Download	English	Version:

https://daneshyari.com/en/article/427513

Download	Persian	Version:

https://daneshyari.com/article/427513

Daneshyari.com

https://daneshyari.com/en/article/427513
https://daneshyari.com/article/427513
https://daneshyari.com/

