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We show that there are computably enumerable (c.e.) sets with maximum initial segment
Kolmogorov complexity amongst all c.e. sets (with respect to both the plain and the
prefix-free version of Kolmogorov complexity). These c.e. sets belong to the weak truth
table degree of the halting problem, but not every weak truth table complete c.e. set has
maximum initial segment Kolmogorov complexity. Moreover, every c.e. set with maximum
initial segment prefix-free complexity is the disjoint union of two c.e. sets with the same
property; and is also the disjoint union of two c.e. sets of lesser initial segment complexity.
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1. Introduction

Kolmogorov complexity measures the complexity of a
finite sequence in terms of the shortest program that can
generate it. It may also be used in order to study the ini-
tial segment complexity of infinite sequences, and it is this
approach that led to the definition of random sequences
in [20,7]. Measures of relative initial segment complex-
ity were initially introduced for the class of computably
enumerable (c.e.) reals (i.e. reals that are the limits of in-
creasing computable sequences of rationals) and were used
in order to characterize Chaitin’s Ω numbers as the c.e. re-
als with maximum initial segment complexity. In this note
we are concerned with the initial segment complexity of
c.e. sets. We discover a class of c.e. sets of maximum ini-
tial segment complexity and study some of its properties.
These c.e. sets may be seen as analogues of Chaitin’s Ω

numbers in the class of c.e. sets.
In Section 1.1 we review the measures that have been

used in the literature in order to classify classes of reals
according to their initial segment complexity. In Section 1.2
we give an account of the known properties concerning
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the initial segment complexity of c.e. sets. In Section 1.3
we give an outline of our results, which are presented in
detail in the main part of this note.

1.1. Measures of relative initial segment complexity

One of the earliest measures for comparing the initial
segment complexity of reals (which we identify with their
binary expansion) was introduced and studied in [26]. It is
known as the ‘Solovay reducibility’, often denoted by �S ,
and for c.e. reals it essentially measures the hardness of
approximation ‘from below’. It is a preorder and it in-
duces a partially ordered degree structure that is known
as the Solovay degrees. In a series of papers [26,8,15] it
was shown that the random c.e. reals are exactly the re-
als in the greatest Solovay degree, and they coincide with
the halting probabilities of universal prefix-free machines.
This structure was studied further (see [9, Section 9.5] for
an overview) and was generally accepted as an adequate
measure for classifying initial segment complexities for the
class of c.e. reals. A number of related measures were in-
troduced in [10] with the hope of providing measures of
relative complexity for different classes of reals. Let K M

denote the Kolmogorov complexity function with respect
to the Turing machine M (i.e., KM(σ ) is the length of the
shortest string τ such that M(τ ) = σ , and ∞ if this does
not exist). Let K = KU where U is a fixed optimal uni-
versal prefix-free machine and let C = K V where V is a
fixed optimal universal (plain) Turing machine. Also, let
C(σ |τ ) denote the Kolmogorov complexity of σ relative
to τ (i.e. when τ is given as an oracle in the underlying
machine that describes σ ). A real X is called random if
∃c ∀n, K (X �n) � n − c. Perhaps the most straightforward
measure of relative initial segment complexity is �K (al-
ready implicit in [26]).

X �K Y
def⇐⇒ ∃c ∀n

(
K (X �n) � K (Y �n) + c

)
. (1.1)

We may express the fact that X �K Y simply by saying
that the prefix-free initial segment complexity of X is less
than (or equal to) the prefix-free initial segment complex-
ity of Y . The plain complexity version �C of the above
relation is defined analogously. These preorders induce the
K -degrees and the C-degrees respectively, which have re-
ceived a certain amount of attention (see [9, Section 9.7]).
We note that �S is contained in �K and so the K -degrees
of c.e. reals have a largest element that contains the ran-
dom c.e. reals. The main proposal for an alternative to
Solovay reducibility that applies to more general classes of
reals was the relative K -reducibility (in symbols, rK ), which
is defined by

X �rK Y
def⇐⇒ ∃c ∀n

(
K (X �n | Y �n) � c

)
. (1.2)

Note that X �rK Y can be defined equivalently using plain
complexity, by the relation ∃c ∀n(C(X �n | Y �n) � c). This
follows from the basic relations between plain and prefix-
free complexity, namely the fact that there exists a con-
stant d such that C(σ |τ ) � K (σ |τ ) + d and K (σ |τ ) �
2C(σ |τ ) + d for all strings σ ,τ . It is not hard to see that
the relation X �rK Y is equivalent to (1.3).

There exists a partial computable function
f : 2<ω × ω → 2<ω and a constant c such that
∀n ∃ j < c ( f (Y �n, j) ↓= X �n). (1.3)

Here ω denotes the set of natural numbers and 2<ω de-
notes the set of finite binary strings. This shows that X �rK

Y implies X �K Y and X �C Y . Moreover (as observed
in [10]) X �rK Y implies X �T Y (where �T is the Turing
reducibility). In [22] it was observed that X �C Y implies
X �T Y , provided that Y is a subset of {22n | n ∈ ω}.

1.2. The initial segment complexity of c.e. sets

By [2], if A is a c.e. set then ∃c ∀n, C(A �n) � 2 log n + c
(here and throughout this paper, log n denotes the largest
integer which is less than or equal to the logarithm of n
on base 2); on the other hand, there are c.e. sets B such
that ∀n, C(B �n) � log n − b for some constant b. Each of
these observations lead to a more informative view about
c.e. sets with complicated initial segments. The first is
from [16] and is known as the Kummer dichotomy. It says
that every member in a certain class of c.e. Turing de-
grees that is known as the array non-computable degrees
contains a c.e. set A such that C(A �n) � 2 log n − c for in-
finitely many n and some constant c; on the other hand
if the degree of a c.e. set B is not in that class and f
is any computable order (i.e. non-decreasing unbounded
function) then ∃b ∀n, C(B �n) � log n + f (n) + b. The sec-
ond is from [13] and [14] and characterizes the c.e. sets A
such that ∀n, C(A �n) � f (n) for a computable order f , as
the weak truth table complete c.e. sets (i.e. the sets that
compute the halting problem with a computable bound on
their use in the computation). These are also called com-
plex sets.

Further research on this topic concerns the behavior
of the measures of complexity that we discussed in Sec-
tion 1.1 on the class of c.e. sets. In [3] it was shown that
in the Solovay degrees of c.e. sets there are pairs with no
upper bound; in particular, there is no maximum degree.
In [5] it was shown that there are no minimal pairs in
the structure of the K -degrees of c.e. sets. This gave an
elementary property that distinguishes this structure from
the C-degrees, the rK -degrees and the Solovay degrees of
c.e. sets. A number of other features in the K -degrees and
the C-degrees of c.e. sets (including splitting theorems and
cone avoidance arguments) were shown in [27, Chapter 2]
(see [4, Section 5]) and [6, Section 6] by emulating the cor-
responding arguments in the c.e. Turing degrees.

1.3. Our results

Perhaps the most basic question concerning the rela-
tive initial segment complexity of c.e. sets is whether there
exist c.e. sets that are more complex (modulo a constant)
than any other c.e. set. In view of the Kummer dichotomy
and the behavior of the c.e. sets in the Solovay degrees,
one would guess a negative answer for any of the mea-
sures of relative complexity of Section 1.1. In Section 2 we
show that, surprisingly, there are complete (i.e. maximum)
elements in the partial orders of the rK -degrees, the C-
degrees and the K -degrees of c.e. sets.
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