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Complex networks, such as small world networks, are the focus of recent interest because
of their potential as models for the interaction networks of complex systems. Most of the
well-known models of small world networks are stochastic. The randomness makes it more
difficult to gain a visual understanding of how networks are shaped, and how different
vertices relate to each other. In this paper, we present and study a method for constructing

deterministic small worlds using the line graph operator. This operator introduces cliques
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at every vertex of the original graph, which may imply larger clustering coefficients. On the
other hand, this operator can increase the diameter at most by one and assure the small

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The neural networks, transportation systems, biological
and chemical systems, social networks, the Internet and
the World Wide Web, are only a few examples of systems
composed of a large number of highly interconnected dy-
namic units. A widely used approach for capturing global
properties of large networks is to model them as graphs,
whose vertices represent the objects or individuals and
whose edges describe pairwise connections. Of course, this
is a restrictive representation, since the interaction be-
tween two objects or individuals depends also on time,
space and many other factors. From a practical point of
view, such a representation provides a simple but still very
informative model of the real network.

In this representation, real networks are characterized
by correlations in the vertex degrees, by having relatively
short paths between any two vertices, and by the pres-
ence of a large number of short cycles or specific motifs.
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This feature of having a relatively short path between any
two vertices within a network, despite of its large size, is
known as the small world property. It was first investigated,
in the social context, by Milgram [12] in the 1960s in a se-
ries of experiments to estimate the actual number of steps
in a chain of acquaintances.

The small world property has been observed in a vari-
ety of other real networks, including biological and tech-
nological ones, and is an obvious mathematical property
in some network models, e.g., in random graphs. In con-
trast to random graphs, the small world property in real
networks is often associated with the presence of cluster-
ing, indicated by high values of the clustering coefficient.
For this reason, Watts and Strogatz [18] proposed to define
small world networks as networks having both a short diam-
eter, like random graphs, and a high clustering coefficient,
like regular lattices. Thus, their model of a large network
is situated between an ordered finite lattice and a ran-
dom graph, presenting the small world property and high
clustering coefficient. Soon after the appearance of [18],
Barthélémy and Amaral [4] studied the origins of the small
world behaviour, while Barrat and Weigt [3] addressed an-
alytically as well as numerically the structure properties of
the Watts-Strogatz model. Since then the study of complex
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networks, including small world networks, has experienced
considerable progress as an interdisciplinary subject. Sev-
eral excellent general reviews and books are available and
we refer to them for the reader who would like to ob-
tain more information on the topic [1,2,5,13,15-17]. In
2000, Kleinberg [10] extended the Watts-Strogatz model
by explaining another important aspect of small world net-
works. He showed that the short paths not only exist but
can be found using a simple greedy strategy with limited
local information only. However, in our work we concen-
trate strictly on the basic properties of the Watts—Strogatz
model and we leave these further improvements for future
research.

Most well-known models of small world networks are
stochastic. But deterministic models have the strong ad-
vantage that it is often possible to compute analytically
their properties, for example, degree distribution, cluster-
ing coefficient, average path length, diameter, etc. Deter-
ministic networks can be created by various techniques.
We can modify regular graphs [6], or we can use standard
graph operations such as the addition or the product of
graphs [7], one can use recursive or iterative techniques
based on the existence of cliques in a given network [8,19,
20], and other mathematical methods.

In this paper, we focus on the small world network
topology generated in a deterministic way, using the line
graph operator. This deterministic approach enables one to
obtain the relevant network parameters: degree distribu-
tion, clustering coefficient and diameter. We show that a
network obtained in this way has strong clustering and a
small diameter.

2. Definitions and notations

In this section we briefly introduce the important terms
underlying our work and three axioms that must be satis-
fied by every Watts-Strogatz model of a small world net-
work.

We consider only simple undirected connected graphs.
Let G be a graph with vertex set V(G) and edge set E(G).
We set n=|V(G)| and m = |E(G)|. A line graph L(G) has
vertices corresponding to edges of G. That is, for every
edge e € E(G) we have a vertex v, € V(L(G)). Two ver-
tices of L(G) are adjacent if and only if the corresponding
edges in G share a common vertex. Denote n’ = |V (L(G))|
and m’ = |E(L(G))|. In the sequel we often use the fact
that n’ = m. We remark that the number of edges of L(G)
depends on the degree distribution in G.

The diameter of G is the greatest distance between two
vertices in G:

diam(G) = max d(u,v). (1)
u,veV(G)

Recall that the distance d(u, v) is the number of edges in
a shortest path starting at u and terminating at v. Regard-
ing the diameter of line graphs, we will use the following
statement given in [14]:

Theorem 1. Let G be a connected graph with at least one edge.
Then,

diam(G) — 1 < diam(L(G)) < diam(G) + 1.

A clustering coefficient is a measure of the degree to
which vertices in a graph tend to cluster together and its
value is always between 0 and 1. We can define a local and
a global clustering coefficient. The (local) clustering coeffi-
cient of a vertex v of G, CCg(v), is the ratio of the total
number of existing connections between the neighbours
N¢(v) of v and the number of all possible connections
between them. (Since G has no loops, v ¢ N¢(v).) We re-
mark that if v has degree 0 or 1, then we set CCs(v) =0.
A (global) clustering coefficient can then be obtained by av-
eraging the local clustering coefficients of all vertices of G,
that is,

CC(G) =

! > CCew). )
VI 56

There are two more definitions we need to include
here. An edge is an (a, b)-edge if it has one endvertex of
degree a and the other of degree b. An edge is good if it
either has at least one endvertex of degree at least 3, or it
lies in a triangle. Otherwise, it is a bad edge.

Now we state axioms for a graph G to be a Watts—
Strogatz model for a small world network, see [9,16]:

(A1) The graph G is sparse. We require |E(G)| € O(nlgn),
that is, |[E(G)|/|V(G)| € O(g |V (G)]).

(A2) The diameter of G is small. We require diam(G) €
o(g|V(G)D.

(A3) The clustering coefficient CC(G) is large. We require
CC(G) > c for a positive constant c.

We remark that some authors prefer slightly different
axioms. For example, they consider average distance in-
stead of the diameter, or use the ® notation instead of
our O notation, etc. In what follows, we study sufficient
conditions under which these axioms are satisfied by line
graphs.

3. Line graph operator and axioms of small worlds
Here we study which of the properties (A1), (A2) and

(A3) are preserved by the line graph operator. First, we
consider the second axiom.

Proposition 2. If G satisfies (A2), then also L(G) satisfies (A2).
Proof. Since the graph G is connected, |V (L(G))|=m >
n — 1. By Theorem 1, diam(L(G)) < diam(G) + 1. Hence,
diam(L(G)) e O(Ign)+1< 0(gm). O

In order to prove an analogue of Proposition 2 for (A3),
we first state two lemmas.

Lemma 3. Let e be an edge in G. Then,

(a) Ifeis a bad edge, then CCp(g)(ve) = 0;
(b) Ifeis a good edge, then CCrG)(Ve) = %

Proof. Denote by u and v the endvertices of e. Further,
denote by a (resp. b) the number of edges adjacent with e
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