
Information Processing Letters 113 (2013) 127–131

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Semi-online hierarchical scheduling problems with buffer
or rearrangements

Xin Chen a, Zhenzhen Xu a, György Dósa b, Xin Han a,∗, He Jiang a

a Software School, Dalian University of Technology, China
b Department of Mathematics, University of Pannonia, Veszprém, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2012
Received in revised form 6 December 2012
Accepted 14 December 2012
Available online 21 December 2012
Communicated by F.Y.L. Chin

Keywords:
Analysis of algorithms
Semi-online scheduling
Competitive ratio
Hierarchy

In this paper, we consider semi-online hierarchical scheduling problems on two identical
machines, with the purpose of minimizing the makespan. The first investigated problem is
the buffer version, where a buffer of a fixed capacity K is available for storing at most
K jobs. When the current job is given, we are allowed to assign it on some machine
irrecoverably; or temporarily store it in the buffer. But in the latter case if the buffer
was full then an earlier job is removed from the buffer and assigned it to some machine.
The second one is a reassignment version, where when the input is end, we are allowed
to reassign at most K jobs. For both versions, we show no online algorithm can have
a competitive ratio less than 3

2 , then propose two online algorithms with a competitive

ratio 3
2 with K = 1 for both versions of the problem, i.e., using only buffer of size one, or

using only one rearrangement at the end.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider two versions of online hi-
erarchical scheduling problems on two identical machines,
with the purpose of minimizing the makespan. Jobs arrive
one by one over a list L and each job has a positive size
and hierarchy g = 1 or 2. There are two machines with the
same speed to process these jobs. However, the machines
have different capability, i.e., the first machine M1 can pro-
cess all the jobs while the second machine M2 can process
only jobs with g j = 2.

Different from the full online version, we consider two
semi-online versions. The first one is a buffer mode, where
we can use a reordering buffer with a fixed capacity K in
this model, and the buffer can store at most K jobs. When
a new job arrives, we can put it in the buffer temporar-
ily, or schedule it on one machine. In the first case, if the

* Corresponding author.
E-mail addresses: cx.dlut@gmail.com (X. Chen), xzz@dlut.edu.cn

(Z. Xu), dosagy@almos.vein.hu (G. Dósa), hanxin@dlut.edu.cn (X. Han),
jianghe@dlut.edu.cn (H. Jiang).

buffer is full with K jobs, then we have to kick out one job
from the buffer and schedule the job on some machine.

The second one is a rearrangement version, where we
are allowed to rearrange some jobs from M2 to M1, or
from M1 to M2. After all the jobs have arrived and been
scheduled, we are informed that the input sequence is
over, then at most K already scheduled jobs can be re-
assigned.

The two versions (with buffer and with reassignment)
of the problem seem closely related. But they are not
equivalent with each other. Some discussions are given in
Section 2.

We use competitive ratio to measure online or semi-
online scheduling algorithms. For a job sequence J and a
scheduling algorithm A, let C A(J) (C A for short) be the
makespane produced by A, and C∗(J) (C∗ for short) be
the optimal makespan in an offline model. Then the com-
petitive ratio of A is the infimum R such that for any in-
put, C A � R · C∗ . An online (or semi-online) version has a
lower bound ρ if no online (or semi-online) scheduling al-
gorithm has a competitive ratio smaller than ρ . An online
(or semi-online) scheduling algorithm A is called optimal if

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.12.007

http://dx.doi.org/10.1016/j.ipl.2012.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:cx.dlut@gmail.com
mailto:xzz@dlut.edu.cn
mailto:dosagy@almos.vein.hu
mailto:hanxin@dlut.edu.cn
mailto:jianghe@dlut.edu.cn
http://dx.doi.org/10.1016/j.ipl.2012.12.007
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2012.12.007&domain=pdf

128 X. Chen et al. / Information Processing Letters 113 (2013) 127–131

its competitive ratio matches the lower bound of the ver-
sion.

Related works Hierarchical scheduling on m parallel ma-
chines problem was first studied by Hwang et al. [6]. They
studied the offline version and proposed an approxima-
tion algorithm LG-LPT with the makespan no more than 5

4
times the optimum for m = 2, and 2 − 1

m−1 times the opti-
mum for m � 3. For the online version, Park et al. [12] and
Jiang et al. [8] independently presented optimal algorithms
with a competitive ratio of 5

3 for two identical machines.
Jiang [7] further generalized the problem to m identical
machines and proposed a lower bound and algorithms.

Several semi-online versions of this problem were stud-
ied these years. Park et al. [12] considered the version that
the total processing time of all jobs is known in advance,
and proposed an optimal algorithm with competitive ra-
tio of 3

2 . Jiang et al. [8] considered the preemptive version
and proposed an optimal solution too. Wu and Yang [16]
investigated two different semi-online versions: the opti-
mal offline value of the input is known in advance or the
largest processing time of all jobs is known in advance.
They proposed two algorithms with competitive ratios of
3
2 and 1+√

5
2 for these two versions on two identical ma-

chines, which are shown to be optimal.
Using a buffer was widely investigated in scheduling

problems [9,17,3,10]. Recently, a paper by Englert et al. [5]
gave several results on identical or uniform machines.
Since using a buffer is advantageous comparing to the
situation when we cannot use it (for example, the best
bound for scheduling two identical machines is 4/3 with
a buffer and 3/2 without it, when the makespan is mini-
mized [5]), we firstly consider the hierarchical scheduling
problem with a buffer in this paper.

Secondly, we consider the rearrangement version, which
was defined by Tan and Yu [13] and then investigated
by several researchers [11,2,1,15]. There are two similar
models: reassignment at the end and reassignment at any
time [13]. For the reassignment at the end, Chen et al.
proposed an optimal online algorithm for two related ma-
chines with K = 2 [2]. For the reassignment at any time,
Dósa et al. obtained an optimal online algorithm for two
related machines with K = 2 and an optimal online algo-
rithm with K = 1 and s � 1.3247 or s � 1.732, where s � 1
is the speed of the faster machine [4].

Our results Consider the two versions we study in this pa-
per. For the semi-online scheduling problem on two identi-
cal machines without hierarchy, the two versions have the
same upper and lower bounds, respectively [2]. Whether
the two versions also have the same tight bounds with hi-
erarchy being under consideration, this is our motivation.
For the both versions, we prove the lower bounds 3

2 , no
matter what constant K is. Then we propose two optimal
algorithms with K = 1 respectively, i.e., using only buffer
of size one or using only one rearrangement at the end.
Considering that the best solution of online version is 5

3
[12,8], we can tell that having a buffer or rearrangement
are both useful for hierarchical scheduling, and only buffer
of size one or only one rearrangement is enough to achieve
the best possible competitive ratio.

The rest of the paper is organized as follows. Section 2
gives some basic notations. Sections 3 and 4 propose lower
bounds and optimal algorithms for the two versions, re-
spectively. Some conclusion remarks are given in Section 5.

2. Preliminaries

In this paper, we are given a set of jobs J = { J1, . . . , Jn}
associated with positive sizes pi and hierarchy gi = 1
or 2, and two identical machines with different capabil-
ity. The first machine M1 can process all the jobs while
the second machine M2 can process only jobs with gi = 2,
which means that jobs with gi = 1 must be scheduled
on M1. Then we should schedule J on M1 and M2 such
that the maximal completion time of M1 and M2 is mini-
mized.

The following notations and definitions are required in
the remainder of the paper, for each j = 1,2, . . . ,n and
i = 1,2.

T j : the total size of the first j jobs.
T 1

j : the total size of jobs with gi = 1 in the first j jobs.

pm
j : the largest job size among the first j jobs.

Li
j : the total size of jobs scheduled on Mi after J j is

processed (scheduled on a machine or stored in the
buffer).

Then we define LB j = max{pm
j , T j/2, T 1

j } as the stan-
dard lower bound of the optimal makespan of the se-
quence containing the first j jobs. We also use (pi, gi) to
denote job J i , where pi is the processing time and gi is
the hierarchy.

Lemma 1. (See [8].) The optimal makespan is at least LB j at any
moment j � 1.

Lemma 2. The two models are not equivalent with each other.

Proof. Let Ar be an algorithm which one can use one re-
assignment at the end, Ab be an online algorithm for a
buffer of size 1. We first prove that there exists a list, for
which by using a buffer of size K = 1 we can get an opti-
mal solution, while using 1 rearrangement at the end we
cannot.

The example is the next: the first job is J1 = (1,1),
where the first number denotes the size and the second
number denotes the hierarchy. The job has to be assigned
to M1. We have no advantage if we put it into the buffer,
thus both algorithms put it to M1. Next J2 = (2,2) is
given. There are two cases.

Case 1. Ar assigns it to M1. Then job J3 = (3,2) is given.
If J3 is assigned on M2, then J4 = (2,2) is given. Else J3
is assigned on M1, then J4 = (4,1) is given. Since Ar can
do only one rearrangement, so it cannot reach an optimal
solution (where the loads will equal). But Ab puts J2 to
M2 when J3 comes, and it can reach an optimal schedule
in both subcases.

Case 2. Ar assigns J2 to M2. Then job J3 = (3,2) is given.
If J3 goes to M2, then job J4 = (6,2) is given. Else J3 goes

Download	English	Version:

https://daneshyari.com/en/article/427542

Download	Persian	Version:

https://daneshyari.com/article/427542

Daneshyari.com

https://daneshyari.com/en/article/427542
https://daneshyari.com/article/427542
https://daneshyari.com/

