An optimal algorithm for computing the non-trivial circuits of a union of iso-oriented rectangles

Panagiotis D. Alevizos
Department of Mathematics, University of Patras, GR-265 00 Patras, Greece

A R T I C L E I N F O

Article history:

Received 17 May 2012
Received in revised form 14 September 2012
Accepted 11 November 2012
Available online 23 November 2012
Communicated by M. Yamashita

Keywords:

Computational geometry
Circuit
Contour
Rectilinear polygons
Optimal algorithm
Sweep plane

Abstract

Given n rectangles R_{1}, \ldots, R_{n} on the plane with sides parallel to the coordinate axes, Lipski and Preparata (1981) [1] have presented a $\Theta(n \log n)$ time and $O(n \log n)$ space algorithm for computing the non-trivial circuits of the union $\mathcal{U}=R_{1} \cup \cdots \cup R_{n}$. In this paper, we are presenting a simple algorithm, which computes the non-trivial circuits of \mathcal{U} in $\Theta(n \log n)$ time and $\Theta(n)$ space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Rectangles and orthogonal segments are the fundamental ingredients of a number of applications, some of which have acquired extreme importance in the wake of current technological breakthroughs. Suffice it to mention its relevance to Very-Large-Scale-Integration (VLSI) [2-4], to geography and related areas [5], to computer graphics and animation (hidden-line problems, shadows, etc.) [6,7], and to the organization of data in two-dimensional magnetic bubble memories [8]. In [9-11], an interesting model, which is based on the geometry of rectangles, has been developed, in order to control concurrent operations (access and update) to a database by several users (this method is described also in [12]). There is also considerable theoretical interest in problems related to the one discussed in this paper. Algorithms and data structures have been devised for quite a number of related problems, such as testing a set of rectangles for disjointness and reporting all inter-

[^0]secting pairs of rectangles [13], determining the measure of their union, i.e., the size of the covered area of the plane [14] (this algorithm is described in [15]), answering intersection queries (given a query rectangle, which rectangles of the set intersect it) [16], to name only a few. Another geometric problem in this class, which we consider in this paper, is determination of the non-trivial circuits of a union \mathcal{U} of iso-oriented rectangles. This is the following problem.

2. Computing the non-trivial circuits of a union \mathcal{U}

First of all, we need some notation. Let R_{1}, \ldots, R_{n} be rectangles on the plane with sides parallel to the coordinate axes, where E be the set of their segments $(|E|=4 n)$ and V the set of their vertices $(|V|=4 n)$. We consider each edge of E as being lined by two arcs with opposite directions and lying on either side of the edge, as illustrated in Fig. 1. This means that each rectangle R_{i} is stored in a cyclic doubly-linked list $L\left(R_{i}\right)$, which represents the two orientations of R_{i} : a clockwise orientation, when marching along R_{i} in the external region of R_{i} (i.e., when using

Fig. 1. The doubly-linked cyclic list $L\left(R_{i}\right)$ associated to a rectangle R_{i}. Each rectangle is supplied with four external and four internal arcs.
the pointers next of $L\left(R_{i}\right)$), and a counterclockwise orientation, when marching along R_{i} in the internal region of R_{i} (i.e., when using the pointers prev of $L\left(R_{i}\right)$). Following the above convention, we say that each rectangle R_{i} is supplied with four external and four internal arcs. The union $\mathcal{U}=R_{1} \cup \cdots \cup R_{n}$ determines a subdivision of the plane into regions. Each region is bounded from a directed circuit (cycle) composed of (alternating) vertical and horizontal (external and/or internal) arcs. An arc is called non-trivial if it contains an endpoint of the segment to which it belongs. A circuit is called non-trivial if it contains a non-trivial arc (Fig. 2). A circuit is said to be contour circuit if it consists of external arcs only. The set of all - trivial and non-trivial - contour circuits is called the contour of \mathcal{U} (Fig. 3). The contour of \mathcal{U} has $O\left(n^{2}\right)$ arcs. In [17], Widmayer and Wood have presented an optimal algorithm, which determines the contour of a union \mathcal{U} in $O(n \log n+p)$ time and $O(n)$
space, where p is the number of arcs in the contour. The non-trivial contour is the collection of all non-trivial contour circuits in \mathcal{U}. The external contour of \mathcal{U} is the boundary between \mathcal{U} and the unbounded region of the plane. The external contour is the unique clockwise oriented nontrivial circuit. Any other non-trivial circuit is counterclockwise oriented. It is straightforward to show that

External contour \subseteq Nontrivial contour
 \subseteq Nontrivial circuits.

The number of arcs in the non-trivial circuits is $O(n)$, while the set of all circuits of \mathcal{U} has $O\left(n^{2}\right)$ arcs, the increase being due to trivial circuits [12]. Lipski and Preparata [1] have presented a time-optimal algorithm for computing the non-trivial circuits of a union \mathcal{U} in $\Theta(n \log n)$ time and $O(n \log n)$ space. In this paper, we will describe a simple algorithm, which determines the non-trivial circuits, the non-trivial contour and the external contour of \mathcal{U} in $\Theta(n \log n)$ time and $\Theta(n)$ space.

2.1. The algorithm

Our algorithm is based on the following simple idea proved in Theorem 1: "each (trivial or non-trivial) arc of a non-trivial circuit C_{i} is (horizontally or vertically) visible from an endpoint $p \in V$ of a non-trivial arc of C_{i} ":

Step 1: For each point $p \in V$, we find at most four visibility points (Fig. 4(a)): From p we trace two horizontal

Fig. 2. (a) The set of all circuits and (b) the set of non-trivial circuits, for a union of rectangles.

Fig. 3. (a) The contour, (b) the non-trivial contour and (c) the external contour of a union of rectangles.

https://daneshyari.com/en/article/427565

Download Persian Version:

https://daneshyari.com/article/427565

Daneshyari.com

[^0]: E-mail address: alevizos@math.upatras.gr.
 0020-0190/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ipl.2012.11.002

