
Information Processing Letters 113 (2013) 60–66

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Memoryless near-collisions, revisited

Mario Lamberger a,∗, Elmar Teufl b

a Institute for Applied Information Processing and Communications, Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
b Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 August 2011
Received in revised form 7 October 2012
Accepted 17 November 2012
Available online 20 November 2012
Communicated by D. Pointcheval

Keywords:
Cryptography
Hash functions
Memoryless near-collisions
Covering codes

In this paper we discuss the problem of generically finding near-collisions for cryptographic
hash functions in a memoryless way. A common approach is to truncate several output
bits of the hash function and to look for collisions of this modified function. In two recent
papers, an enhancement to this approach was introduced which is based on classical cycle-
finding techniques and covering codes. This paper investigates two aspects of the problem
of memoryless near-collisions. Firstly, we give a full treatment of the trade-off between
the number of truncated bits and the success-probability of the truncation based approach.
Secondly, we demonstrate the limits of cycle-finding methods for finding near-collisions by
showing that, opposed to the collision case, a memoryless variant cannot match the query-
complexity of the “memory-full” birthday-like near-collision finding method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The field of hash function research has developed sig-
nificantly in the light of the attacks on some of the most
frequently used hash functions like MD4, MD5 and SHA-1.
As a consequence, academia and industry started to eval-
uate alternative hash functions, e.g. in the SHA-3 initiative
organized by NIST [1]. During this ongoing evaluation, not
only the three classical security requirements collision re-
sistance, preimage resistance and second preimage resistance
are considered. Researchers look at (semi-)free-start colli-
sions, near-collisions, distinguishers, etc. A ‘behavior differ-
ent from that expected of a random oracle’ for the hash
function is undesirable as are weaknesses that are demon-
strated only for the compression function and not for the
full hash function.

Coding theory and hash function cryptanalysis have
gone hand in hand for quite some time now, where a
crucial part of the attacks is based on the search for low-
weight code words in a linear code (cf. [2–4] among oth-
ers). In this paper, we want to elaborate on a newly pro-

* Corresponding author.
E-mail addresses: mario.lamberger@iaik.tugraz.at (M. Lamberger),

elmar.teufl@uni-tuebingen.de (E. Teufl).

posed application of coding theory to hash function crypt-
analysis. In [5,6], it is demonstrated how to use covering
codes to find near-collisions for hash functions in a mem-
oryless way. We also want to refer to the recent paper [7]
which considers similar concepts from the viewpoint of lo-
cality sensitive hashing.

In all of the following, we will work with binary val-
ues, where we identify {0,1}n with Z

n
2. Let “+” denote

the n-bit exclusive-or operation. The Hamming weight of
a vector v ∈ Z

n
2 is denoted by w(v) = |{i | vi = 1}| and the

Hamming distance of two vectors by d(u, v) = w(u + v).
The Handbook of Applied Cryptography [8, p. 331] defines
near-collision resistance of a hash function H as follows:

Definition 1 (Near-collision resistance). It should be hard to
find any two inputs m, m∗ with m �= m∗ such that H(m)

and H(m∗) differ in only a small number of bits:

d
(

H(m), H
(
m∗)) � ε. (1)

For ease of later use we also give the following defini-
tion:

Definition 2. A message pair m,m∗ with m �= m∗ is called
an ε-near-collision for H if (1) holds.

0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.11.004

http://dx.doi.org/10.1016/j.ipl.2012.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mario.lamberger@iaik.tugraz.at
mailto:elmar.teufl@uni-tuebingen.de
http://dx.doi.org/10.1016/j.ipl.2012.11.004

M. Lamberger, E. Teufl / Information Processing Letters 113 (2013) 60–66 61

Collisions can be considered a special case of near-
collisions with the parameter ε = 0. The generic method
for finding collisions for a given hash function is based
on the birthday paradox and attributed to Yuval [9]. There
are well established cycle-finding techniques (due to Floyd,
Brent, Nivasch, cf. [10–12]) that remove the memory re-
quirements from an attack based on the birthday paradox
(see also [13]). These methods work by repeated iteration
of the underlying hash function where in all of these appli-
cations the function is considered to behave like a random
mapping (cf. [14,15]).

In [5,6], the question is raised whether or not the
above mentioned cycle-finding techniques are also appli-
cable to the problem of finding near-collisions. We now
briefly summarize the ideas of [5,6].

Since Definitions 1 and 2 include collisions as well, the
task of finding near-collisions is easier than finding colli-
sions. We now want to have a look at generic methods to
construct near-collisions which are more efficient than the
generic methods to find collisions.

In the following, let Br(x) := {y ∈ Z
n
2 | d(x, y) � r} de-

note the Hamming ball (or Hamming sphere) around x of
radius r. Furthermore, we denote by Sn(r) := |Br(x)| =∑r

i=0

(n
i

)
the cardinality of any n-dimensional Hamming

ball of radius r.
A simple adaption of the classical table-based birth-

day attack for finding ε-near-collisions is to start with an
empty table, randomly select a message m and compute
H(m) and then test whether the table contains an entry
(H(m) + δ,m∗) for some δ ∈ Bε(0) and arbitrary m∗ . If so,
the pair (m,m∗) is an ε-near-collision. If not, (H(m),m) is
added to the table and repeat. Then, we know the follow-
ing:

Lemma 1. (See [5].) Let H be an n-bit hash function. If we
assume that H acts like a random mapping, the average num-
ber of messages that we need to hash and store in a table-
based birthday-like attack before we find an ε-near-collision is
O (2n/2 Sn(ε)−1/2).

Remark 1. We want to note that in this paper we are
measuring the complexity of a problem by counting (hash)
function invocations. This constitutes an adequate measure
in the case of the memoryless algorithms in this paper,
however the real computational complexity of the table-
based algorithm above is dominated by the memory ac-
cess, as the problem of searching for an ε-near-collision in
the table is much harder than testing for a collision.

The first straight-forward approach to apply the cycle-
finding algorithms to the problem of finding near-collisions
is a truncation based approach.

Lemma 2. Let H be an n-bit hash function. Let τε : Zn
2 → Z

n−ε
2

be a map that truncates ε bits from its input at predefined po-
sitions. If we assume that τε ◦ H acts like a random mapping,
we can apply a cycle-finding algorithm to the map τε ◦ H to
find an ε-near-collision in a memoryless way with an expected
complexity of about 2(n−ε)/2 .

Proof. Under the assumptions of the lemma, the results
from [14,15] are applied to a random mapping with output
length n − ε . �
2. A thorough analysis of the truncation approach

As indicated in [5], a simple idea to improve the trun-
cation based approach is to truncate more than ε bits.
That is, in order to find an ε-near-collision we simply
truncate μ bits with μ > ε . A cycle-finding method ap-
plied to τμ ◦ H has an expected complexity of 2(n−μ)/2

and deterministically finds two messages m, m∗ such that
d(H(m), H(m∗)) � μ. However, we can look at the prob-
ability that these two messages m, m∗ satisfy d(H(m),

H(m∗)) � ε which is 2−μ
∑ε

i=0

(μ
i

) = 2−μSμ(ε).
For a truly memoryless approach, multiple runs of

the cycle-finding algorithm are interpreted as indepen-
dent events. Therefore, the expected complexity to find an
ε-near-collision can be obtained as the product of the ex-
pected complexity to find a cycle, and the expected num-
ber of repetitions of the cycle-finding algorithm, i.e. the
reciprocal value of the probability that a single run finds
an ε-near-collision. In other words, we end up with an ex-
pected complexity of

2(n+μ)/2 Sμ(ε)−1 = 2(n+μ)/2

(
ε∑

i=0

(
μ

i

))−1

. (2)

Remark 2. In [5], the above approach was already pro-
posed with μ = 2ε + 1. In this case (2) results in a com-
plexity of

2(n+2ε+1)/2 S2ε+1(ε)−1 = 2(n+1)/2−ε,

which clearly improves upon Lemma 2. Here we have used
that S2ε+1(ε) = 1

2 S2ε+1(2ε + 1) = 22ε .

An interesting question that now arises is to find the
number of truncated bits μ that constitutes the best trade-
off between a larger μ, i.e. a faster cycle-finding part, and
a higher number of repetitions for this probabilistic ap-
proach. In other words, we would like to determine the
value of μ which minimizes (2) for a given ε . Analogously,
we can search for an integer μ > ε such that for a given
ε the expression 2−μ/2 Sμ(ε) is maximized. For small val-
ues of ε , values for μ were already computed in [5] by
an exhaustive search. In this section, we want so solve this
problem analytically.

We first show a result that tells us something about the
behavior of the sequence of real numbers

aμ := 2−μ/2 Sμ(ε) = 2−μ/2
ε∑

i=0

(
μ

i

)
. (3)

We want to note that based on the origin of the problem,
we are only interested in values aμ for μ > ε . Our analysis
is still valid starting with μ = 1. We will need the follow-
ing two properties of sequences:

Download English Version:

https://daneshyari.com/en/article/427566

Download Persian Version:

https://daneshyari.com/article/427566

Daneshyari.com

https://daneshyari.com/en/article/427566
https://daneshyari.com/article/427566
https://daneshyari.com

