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Matching markets play a prominent role in economic theory. A prime example of such a
market is the sponsored search market. Here, as in other markets of that kind, market
equilibria correspond to feasible, envy free, and bidder optimal outcomes. For settings
without budgets such an outcome always exists and can be computed in polynomial-
time by the so-called Hungarian Method. Moreover, every mechanism that computes
such an outcome is incentive compatible. We show that the Hungarian Method can be
modified so that it finds a feasible, envy free, and bidder optimal outcome for settings with
budgets. We also show that in settings with budgets no mechanism that computes such an
outcome can be incentive compatible for all inputs. For inputs in general position, however,
the presented mechanism—as any other mechanism that computes such an outcome for
settings with budgets—is incentive compatible.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In a matching market n bidders have to be matched to
k items. A prime example of such a market is the spon-
sored search market, where bidders correspond to adver-
tisers and items correspond to ad slots. In this market
each bidder has a per-click valuation vi , each item j has a
click-through rate α j , and bidder i’s valuation for item j is
vi, j = α j · vi . More generally, each bidder i has a valuation
vi, j for each item j. In addition, each item j has a reserve
price r j . A mechanism is used to compute an outcome
(μ, p) consisting of a matching μ and per-item prices p j .
The bidders have quasi-linear utilities. That is, bidder i’s
utility is ui = 0 if he is unmatched and it is ui = vi, j − p j

if he is matched to item j at price p j . The valuations are
private information and the bidders need not report their
true valuations if it is not in their best interest to do so.

✩ A preliminary version of this paper appeared in Dütting et al.
(2010) [1].
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Ideally, the market should be in equilibrium. In the con-
text of matching markets this typically means that the
outcome computed by the mechanism should be feasible,
envy free, and bidder optimal. An outcome is feasible if all
bidders have non-negative utilities and if the price of all
matched items is at least the reserve price. It is envy free
if it is feasible and if at the current prices no bidder would
get a higher utility if he was assigned a different item. It is
bidder optimal if it is envy free and if the utility of every
bidder is at least as high as in every other envy free out-
come. Another requirement is that the mechanism should
be incentive compatible. A mechanism is incentive com-
patible if each bidder maximizes his utility by reporting
truthfully no matter what the other bidders report.

For matching markets of the above form a bidder opti-
mal outcome always exists [2], can be computed in poly-
nomial time by the so-called Hungarian Method [3], and
every mechanism that computes such an outcome is in-
centive compatible [4]. The above model, however, ignores
the fact that in practice bidders often have budgets. Con-
crete examples include Google’s and Yahoo’s ad auction.
Budgets are also challenging theoretically as they lead to
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discontinuous utility functions and thus break with the
quasi-linearity of the original model without budgets.

In our model each bidder can specify a maximum price
for each item. If bidder i specifies a maximum price of mi, j
for item j, then he cannot pay any price p j � mi, j . Hence
the utility of bidder i is ui = 0 if he is unmatched, it is
ui = vi, j − p j if he is matched to item j at price p j < mi, j

(strict inequality), and it is ui = −∞ otherwise.1 As be-
fore an outcome is feasible if all bidders have non-negative
utilities and if the price of all matched items is at least the
reserve price. It is envy free if it is feasible and if at the
current prices no bidder would get a higher utility if he
was assigned a different item. It is bidder optimal if it is
envy free and if the utility of every bidder is at least as
high as in every other envy free outcome.

For this model we show that the Hungarian Method
can be modified so that it always finds a bidder optimal
outcome in polynomial time. We also show that no mech-
anism that computes such an outcome is incentive com-
patible for all inputs. For inputs in general position, i.e.,
inputs with the property that in a certain weighted multi-
graph defined on the basis of the input no two walks have
exactly the same weight, our mechanism—as any other
mechanism that computes a bidder optimal outcome—is
incentive compatible [5]. All our results can be extended
to more general (but still linear) utility functions.

A similar problem was previously considered by [6].
Their model differs from our model in several ways:
(1) The utility ui of bidder i is ui = 0 if he is unmatched,
it is ui = vi, j − p j if he is matched to item j at price
p j � mi, j (weak inequality), and it is ui = −∞ otherwise.
(2) The reserve prices ri, j may depend on the bidders and
the items. (3) An outcome is envy free if it is feasible and
if for all bidders i and all items j either (a) ui � vi, j −
max(p j, ri, j) or (b) p j � mi, j . For these definitions they
showed that for inputs in general position (a) a bidder op-
timal outcome always exists, (b) a bidder optimal outcome
can be computed by a (rather complicated) mechanism in
polynomial time, and (c) this mechanism is incentive com-
patible. For inputs that are not in general position a bidder
optimal outcome may not exist as the following example
shows.2,3

1 While requiring p j � mi, j seems to be more intuitive, it has the dis-
advantage that the infimum envy prices may not be envy free themselves:
There are three bidders and one item. All bidders have a valuation of 10
and the first two bidders have a maximum price of 5. Then any price
p � 5 is not envy free because all bidders would prefer to be matched,
and any price p > 5 is not bidder optimal because a slightly lower price
would still be envy free.

2 An input is in general position if in the weighted, directed, and bi-
partite multigraph with one node per bidder i, one node per item j, and
one node for the dummy item j0 and forward edges from i to j with
weight −vi, j , backward edges from j to i with weight vi, j , reserve-price
edges from i to j with weight vi, j − ri, j , maximum-price edges from i to
j with weight mi, j − vi, j , and terminal edges from i to j0 with weight 0
no two walks that start with the same bidder, alternate between forward
and backward edges, and end with a distinct edge that is either a reserve-
price edge, a maximum-price edge, or a terminal edge have the same
weight.

3 The example is not in general position because the walk that consists
of the maximum-price edge from bidder 1 to item 1 and the walk that
consists of the forward edge from bidder 1 to item 1, the backward edge
from item 1 to bidder 2, and the maximum-price edge from bidder 2 to
item 1 have the same weight.

Fig. 1. Bidders are on the left side and items are on the right side of the
graphs. The numbers next to the bidder indicate his utility, the numbers
next to the item indicate its price. The labels along the edge show val-
uations and maximum prices. Matched edges are bold, while unmatched
edges are thin.

Example 1. There are two bidders and one item. The val-
uations and maximum prices are as follows: v1,1 = 10,
v2,1 = 10, and m1,1 = m2,1 = 5. While μ = {(1,1)} with
p1 = 5 is “best” for bidder 1, μ = {(2,1)} with p1 = 5 is
“best” for bidder 2. With our definitions a bidder optimal
outcome is μ = ∅ with p1 = 5. See Fig. 1.

The sponsored search market was considered by [7],
who proved the existence of a unique feasible, envy free,
and Pareto efficient outcome. They also presented an in-
centive compatible mechanism to compute such an out-
come in polynomial time. Their model, however, is less
general than the model studied here as (1) the valuations
must be of the form vi, j = α j · vi , and (2) the maximum
prices are per-bidder, i.e., for each bidder i there exists mi
such that mi, j = mi for all j, and are required to be dis-
tinct.

Matching markets with more general, non-linear util-
ity functions were studied in [8,9,5]. In [8] we proved
the existence of a bidder optimal outcome for general
utility functions with multiple discontinuities. In [9] a
polynomial-time mechanism for consistent utility functions
with a single discontinuity was given. In [5] we presented
a polynomial-time mechanism for piece-wise linear utility
functions with multiple discontinuities.

To summarize: (1) We show how to modify the Hun-
garian Method in settings with budgets so that it finds a
bidder optimal outcome in polynomial time. (2) We show
that in settings with budgets no mechanism that computes
a bidder optimal outcome can be incentive compatible for
all inputs. (3) We show how to extend these results to
more general (but still linear) utility functions.

2. Problem statement

We are given a set I of n bidders and a set J of k items.
We use letter i to denote a bidder and letter j to denote
an item. For each bidder i and item j we are given a val-
uation vi, j , for each item j we are given a reserve price r j ,
and for each bidder i and item j we are given a maxi-
mum price mi, j . We assume that the set of items contains
a dummy item j0 for which all bidders have a valuation of
zero, a reserve price of zero, and a maximum price of ∞.4

We want to compute an outcome (μ, p) consisting of a
matching μ ⊆ I × J and per-item prices p = (p1, . . . , pk).

We require that (a) every bidder i appears in exactly one
bidder-item pair (i, j) ∈ μ and that (b) every non-dummy

4 Reserve utilities, or outside options oi , can be modelled by setting
vi, j0 = oi for all i.



Download English Version:

https://daneshyari.com/en/article/427567

Download Persian Version:

https://daneshyari.com/article/427567

Daneshyari.com

https://daneshyari.com/en/article/427567
https://daneshyari.com/article/427567
https://daneshyari.com

