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We derive a simple efficient algorithm for Abelian periods knowing all Abelian squares
in a string. An efficient algorithm for the latter problem was given by Cummings and
Smyth in 1997. By the way we show an alternative algorithm for Abelian squares. We
also obtain a linear time algorithm finding all “long” Abelian periods. The aim of the paper
is a (new) reduction of the problem of all Abelian periods to that of (already solved) all

Abelian squares which provides new insight into both connected problems.
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1. Introduction

We present an efficient reduction of the Abelian pe-
riod problem to the Abelian square problem. For a string
of length n the latter problem was solved in O(n2) by
Cummings and Smyth [7]. The best previously known algo-
rithms for the Abelian periods, see [12], worked in O (n?m)
time (where m is the alphabet size) which for large m
is 0(n?). Our algorithm works in O(n?) time. As a by-
product we obtain an alternative O(n?) time algorithm
finding all Abelian squares and an O(n) time algorithm
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finding a compact representation of all Abelian periods of
length greater than n/2, in particular, the shortest such pe-
riod.

Abelian squares were first studied by Erdés [11], who
posed a question on the smallest alphabet size for which
there exists an infinite Abelian-square-free string. An ex-
ample of such a string over five-letter alphabet was given
by Pleasants [16] and afterwards the best possible example
over four-letter alphabet was shown by Kerdnen [13].

Quite recently there have been several results on
Abelian complexity in words [1,4,8-10] and partial words
[2,3] and on Abelian pattern matching [5,14,15]. Abelian
periods were first defined and studied by Constantinescu
and llie [6].

We say that two strings are (commutatively) equivalent,
and write x = y, if one can be obtained from the other by
permuting its symbols. In other words, the Parikh vectors
P(x), P(y) are equal, where the Parikh vector gives fre-
quency of each symbol of the alphabet in a given string.
Parikh vectors were introduced already in [6] for this prob-
lem.
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c aaabacb>bbaabocbbabcabbocbda

Fig. 1. A word of length 25 with an Abelian period (i = 3, p = 6). This period implies two Abelian squares: abacbbbaabcb and baabcbbabcab.

Table 1
The values of head(1,i),i=1,..., 11, for the infinite Fibonacci word. Numbers in bold denote halves of square prefixes of the word.
i 1 2 3 4 5 6 7 8 9 10 11
Fli] a b a a b a b a a b a
head(1, i) 2 3 3 5 5 6 8 8 10 10 11
A string w is an Abelian k-power if w = x1x2...X, Example 1. For the infinite Fibonacci word F =

where
XI=EX=-=X.

The length of x; is called the base of the k-power. In par-
ticular w is an Abelian square if and only if it is an Abelian
2-power.

A string x is an Abelian factor of y if P(x) <P(y), that
is, each element of P(x) is smaller than the corresponding
element of P(y). The pair (i, p) is an Abelian period of w =
w[1,n] if and only if w[i+1, j] is an Abelian k-power with
base p (for some k) and w[1,i] and w[j+ 1, n] are Abelian
factors of w[i 4+ 1,i+ p], see Fig. 1. Here p is called the
length of the period.

In Section 2 we introduce two auxiliary tables that we
use in computing Abelian squares and powers. Next in Sec-
tion 3 we show new O (n2) time algorithms for all Abelian
squares and all Abelian periods in a string and a reduction
between these problems.

Finally in Section 4 we present an O (n) time algorithm
finding a compact representation of all “long” Abelian pe-
riods. Define

MinLong (i)
=min{p > n/2: (i, p) is an Abelian period of w}.

If no such p exists, we set MinLong(i) = oco. All long
Abelian periods are of the form (i,p) where p >
MinLong(i), the table MinLong is a compact O (n) space
representation of potentially quadratic set of long Abelian
periods.

2. Auxiliary tables

Let w be a string of length n. Assume its positions are
numbered from 1 to n, w = wiwy...wy. By wli, j] we
denote the factor of w of the form w;w;;...wj. Factors
of the form w[1,i] are called prefixes of w and factors of
the form wli, n] are called suffixes of w.

We introduce the following table:

head(i, j) = minimum k such that
P(wli, j1) < P(wlj+1, j+kI).

If no such k exists, we set head(i, j) = oo, and if j < i, we
set head(i, j) = 0. In the algorithm below we actually com-
pute a slightly modified table head'(i, j) = j + head(i, j).

abaababaabaababaababaa . .. the first several values of the
table head(1,i) are presented in Table 1.

We have here Abelian square prefixes of lengths 6, 10,
12, 16, 20, 22.

We show how to compute the head’ table in O(n?)
time. The computation is performed in row-order of the
table using the fact that it is non-decreasing:

Observation 2. For any 1 < i < j < n, head (i, j) <
head'(i, j + 1).

We assume that the alphabet of w is ¥ ={1,2,...,m}
where m < n. For a Parikh vector Q, by Q[i] for i =
1,2,...,m we denote the number of occurrences of the
letter i. For two Parikh vectors Q and R, we define their
Parikh difference, denoted as Q — R, as a Parikh vector:
(Q — B)[i]= Q[i] — RI[i].

In the algorithm we store the difference Aj; ="P(y;) —
P(x;) of Parikh vectors of

xj=wl[i,j] and yj=w[j+1,k]

where k = head'(i, j). Note that Ajla] > 0 for any a =
1,2,...,m.

Assume we have computed head'(i, j — 1) and Aj_1.
When we proceed to j, we move the letter w[j] from y
to x and update A accordingly. Thus at most one element
of A might have dropped below 0. If there is no such el-
ement, we conclude that head (i, j) = head'(i, j — 1) and
that we have obtained A; = A. Otherwise we keep ex-
tending y to the right with new letters and updating A
until all its elements become non-negative. We obtain the
following algorithm Compute-head.

Lemma 3. The head table can be computed in O (n?) time.

Proof. The time complexity of the algorithm Compute-
head is O(n?). Indeed, the total number of steps of the
while-loop for a fixed value of i is O(n), since each step
increases the variable k. O

We also use the following tail table that is analogical to
the head table:

tail(i, j) = minimum k such that

P(wli, jl) < P(wli —k,i—1]).
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