
Information Processing Letters 112 (2012) 823–828

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Topological ordering algorithm for LDAG

GuiPing Wang a,∗, ShuYu Chen b, XiaoQin Zhang a, Zhen Zhou a

a College of Computer Science, Chongqing University, Chongqing 400044, China
b College of Software Engineering, Chongqing University, Chongqing 400044, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2012
Received in revised form 10 July 2012
Accepted 26 July 2012
Available online 1 August 2012
Communicated by Jinhui Xu

Keywords:
DAG
Topological order
Level
LDAG
Computational complexity

Directed Acyclic Graph (DAG) is an important tool for workflow modeling and data
provenance management. In these applications, DAG usually performs well. Yet for some
workflow applications, except data or control dependencies between atomic tasks, there
exists another requirement that each atomic task should be accomplished at an expected
stage. Therefore, this paper proposes an improved DAG model – LDAG, in which each vertex
has a level. Three cases of the level of vertices are discussed. For a reasonable one of these
cases, this paper proposes a topological ordering algorithm and proves its correctness. In
addition, it discusses the complexity of the algorithm and some other relevant problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Directed Acyclic Graph (DAG) is widely used in vari-
ous areas, such as workflow modeling [1], data provenance
management [2], etc. An important operation on a DAG is
topological ordering, which can be used to gain a topo-
logical order of all vertices and judge whether there exist
directed circuits.

A topological order T of a given DAG D = (V , A) is
a linear order of its all vertices in which for all directed
paths from vertex x to y(x �= y), T (x) < T (y) holds.

Topological ordering can be implemented by two
means:

1) DFS-based means: utilizing DFS algorithm to compute
finishing times f [v] for each vertex v; as each vertex
is finished, inserting it into the front of a linked list.

2) BFS-analogous means: at each step, choosing a vertex
v without incoming arc, deleting v and its all outgo-
ing arcs, and then inserting v into the tail of a linked
list.

* Corresponding author.
E-mail address: w_guiping@163.com (G.P. Wang).

For DFS-based means, some well-known algorithms are
proposed, which compute the topological order of a DAG
in O (m + n) time [3–5] (n = |V | and m = |A|). A detailed
description of the algorithms can be found in [6].

For BFS-analogous means, a proposition and a corre-
sponding algorithm can be found in [7]. Similarly, the al-
gorithm can be performed in O (m + n) time.

Several variants of topological ordering problem are
proposed. For example, an online variant of this problem,
which is called online incremental topological ordering, is
discussed in [8,9]. In this online variant, the arcs of the
DAG are unknown in advance but are given one at a time.
An O (n2.75) time algorithm is proposed in [9], which is in-
dependent of the number m of arcs inserted.

In most situations of workflow modeling, DAG performs
well. Yet for some workflow applications, except data or
control dependencies between atomic tasks, there exists
another requirement that each atomic task should be ac-
complished at an expected stage. For example, due to in-
sufficiency of computing resources, a large and sophisti-
cated job has to be executed in several stages. Another
situation is that the job inherently contains several stages.
In these situations, the workflow has to be partitioned into
several stages, and each task corresponds to a given stage
called level.

0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.07.015

http://dx.doi.org/10.1016/j.ipl.2012.07.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:w_guiping@163.com
http://dx.doi.org/10.1016/j.ipl.2012.07.015

824 G.P. Wang et al. / Information Processing Letters 112 (2012) 823–828

Fig. 1. Two digraphs.

For these situations, in this paper, we propose an im-
proved DAG model – LDAG. In LDAG, each atomic task has
a level. The level of an atomic task may be an inherent
stage of the whole job or an expected stage to be executed.
We analyse three cases of the level of atomic tasks. For a
reasonable one of these cases, we propose a topological
ordering algorithm based on BFS-analogous algorithm [7].
The algorithm consists of two phases, namely Level Adjust-
ing and Topological Ordering. We prove the correctness of
the algorithm.

The remainder of this paper is organized as follows.
Section 2 introduces formal definitions and preliminaries.
Section 3 presents LDAG model, and discusses three cases
of the level of tasks. In Section 4, we propose a topological
ordering algorithm for a reasonable case of LDAG.

2. DAG model and preliminaries

For clear illustration, we introduce formal definitions
relevant to DAG and topological order in this section.

2.1. DAG as a model for workflow

Definition 2.1 (Directed graph or digraph). A directed graph
D consists of a non-empty finite set of elements called ver-
tices (or nodes) and a finite set of ordered pairs of distinct
vertices called arcs. Usually, D = (V , A) or D(V , A) repre-
sents a digraph, while V (D) and A(D) represent vertex set
and arc set respectively.

For example, in the digraph shown in Fig. 1(a), V =
{a,b, c,d, e, f }, A = {〈a,b〉, 〈a, c〉, 〈b, c〉, 〈b, e〉, 〈c,d〉, 〈c, e〉,
〈d, f 〉, 〈e, f 〉}.

Definition 2.2 (Directed circuit). In a given digraph, if a di-
rected path, uu1u2 . . . un v , starts from and ends in a same
vertex, that is, u = v , then this path is called a directed
circuit.

Definition 2.3 (DAG). A digraph without directed circuit is
called Directed Acyclic Graph or DAG for short.

Based on this definition, for the two diagraphs in Fig. 1,
Fig. 1(a) is a DAG, while Fig. 1(b) is not since cdec is a
directed circuit.

Due to data or control dependencies between atomic
tasks, and the requirement for no directed circuit, DAG is
a natural tool for workflow modeling, in which vertices
represent atomic tasks and directed arcs represent data
or control dependencies between tasks. The terms vertex,
task and atomic task are interchangeable in the remainder
of this paper.

Therefore, a workflow job can be represented by a DAG
D(V , A), where V = {t1, t2, . . . , tn} is the set of atomic
tasks (n is the total number of tasks), and A is the set of
arcs indicating the dependency and precedence constraints
between tasks.

Definition 2.4 (Predecessor and successor). In a DAG D(V , A),
if 〈u, v〉 is an arc in A, then the task u is a direct prede-
cessor of task v , and v is a direct successor of u. If there
exists a directed path from u to v , such as uu1u2 . . . un v ,
then u is a predecessor of v , and v is a successor of u.

Definition 2.5 (Task strictness). In a DAG, each task is strict
with respect to both its predecessors and successors. In
other words, a task can start to be executed only when
all of its predecessor tasks have been accomplished.

After modeling workflow with a DAG, the foremost
work is to judge whether there exist directed circuits. For
a DAG workflow without circuits, the tasks can be sched-
uled according to their topological order. Otherwise, they
cannot be scheduled and executed.

2.2. Topological order

Definition 2.6 (Topological order). A topological order of a
DAG is a linear order of all vertices that satisfy all the
predecessor and successor relations in the DAG. Another
definition has been shown in Section 1. The topological or-
dering operation on a DAG is to arrange all vertices into a
topological order.

For example, one of the topological orders of Fig. 1(a)
is abcedf, which satisfies the condition that an arc always
leads from an anterior vertex to a posterior one in this or-
der. abcdef is another topological order, while acbdef is not
because the precedence relation of 〈b, c〉 is not satisfied.

3. LDAG: each vertex has a level

In some real applications, each atomic task corresponds
to a given stage, i.e. level. We propose an improved model,
LDAG, for the modeling of these workflow applications. We
then discuss three cases of the level of vertices.

Definition 3.1 (Level). In some DAG workflows, each vertex
has a weight called level. The level of a task may be an
inherent stage of the task in a whole job or an expected
stage to be executed.

Definition 3.2 (LDAG). In a DAG workflow, if each vertex
has a level, the model is called LDAG in this paper.

For example, a LDAG is shown in Fig. 2, the number
beside each vertex represents its level.

LDAG can be widely used in workflow modeling. Con-
sequently, it is important to study this model and some
relevant problems, such as topological ordering, scheduling
and optimizing. In this paper, we focus on the first prob-
lem.

Download English Version:

https://daneshyari.com/en/article/427606

Download Persian Version:

https://daneshyari.com/article/427606

Daneshyari.com

https://daneshyari.com/en/article/427606
https://daneshyari.com/article/427606
https://daneshyari.com

