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A (k, �)-cocoloring of a graph is a partition of its vertex set into at most k stable sets
and at most � cliques. It is known that deciding if a graph is (k, �)-cocolorable is NP-
complete. A graph is extended P4-laden if every induced subgraph with at most six vertices
that contains more than two induced P4’s is {2K2, C4}-free. Extended P4-laden graphs
generalize cographs, P4-sparse and P4-tidy graphs. In this paper, we obtain a linear time
algorithm to decide if, given k, � � 0, an extended P4-laden graph is (k, �)-cocolorable.
Consequently, we obtain a polynomial time algorithm to determine the cochromatic
number and the split chromatic number of an extended P4-laden graph. Finally, we present
a polynomial time algorithm to find a maximum induced (k, �)-cocolorable subgraph of
an extended P4-laden graph, generalizing the main results of Bravo et al. (2011) [4] and
Demange et al. (2005) [5].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many hard problems on graphs, such as the coloring
problem or the vertex cover problem, are vertex partition
problems. In general, the objective of a partition problem is
to partition the vertex set of a graph into disjoint subsets
(or classes) which satisfy certain conditions. Such condi-
tions can be internal, as in the graph coloring problem,
where each class must be a stable set, or external, as in the
acyclic coloring problem, where every two classes induce
an acyclic subgraph. An interesting partition problem is the
partition of the vertex set into cliques and stable sets.

We say that a graph is (k, �)-cocolorable (also referred
in the literature as (k, �)-colorable) if its vertex set can be
partitioned in at most k stable sets and at most � cliques.
This concept was first introduced in [16] and attracted
the attention of Erdős [7–9] as a natural extension of the
graph coloring problem. As an example, split graphs are
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the (1,1)-cocolorable graphs. The cochromatic number of
a graph G is the smallest integer z(G) such that G is (k, �)-
cocolorable for k + � = z(G) [13].

An interesting application of the cochromatic number
is to partition a permutation into increasing or decreas-
ing subsequences. Unfortunately, finding the cochromatic
number is NP-hard even for permutation graphs [18]. In
2010, Heggernes et al. obtained a fixed-parameter algo-
rithm to solve this problem for permutation graphs (and
for perfect graphs) [14].

In [1,2], Brandstädt obtained a polynomial time al-
gorithm to decide if a graph is (2,2)-cocolorable and
proved that deciding if a graph is (k, �)-cocolorable is NP-
Complete for k � 3 or � � 3. Recently, polynomial time
algorithms was obtained for chordal graphs [15], cographs
[3,5,10] and P4-sparse graphs [4]. This problem was also
investigated for perfect graphs in [11].

In this paper, we investigate the cocoloring problem for
extended P4-laden graphs, which are the graphs such that
every induced subgraph with at most six vertices contains
at most two induced P4’s or is {2K2, C4}-free. This graph
class was introduced in [12], and a motivation to develop
algorithms for extended P4-laden graphs lies on the fact
that they are on the top of a widely studied hierarchy of
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classes containing many graphs with few P4’s, including
cographs, P4-sparse, P4-lite, P4-laden and P4-tidy graphs.
Therefore, solving interesting problems in an efficient way
for extended P4-laden graphs immediately imply efficient,
generalized algorithms for all these classes. Another moti-
vation is that extended P4-laden graphs are not contained
in perfect graphs; hence this work brings good examples of
coloring applications not specifically related to perfection.

In this paper, we present a linear time algorithm to de-
cide if an extended P4-laden graph is (k, �)-cocolorable
for k, � � 0. Consequently, we obtain a polynomial time
algorithm to determine the cochromatic number of an
extended P4-laden graph. Our result also implies a poly-
nomial time algorithm to determine the split chromatic
number of an extended P4-laden graph G , which is de-
fined as the minimum p = max{k, �} such that G is
(k, �)-cocolorable (see [5,6]). Finally, we present a poly-
nomial time algorithm to find a maximum induced (k, �)-
cocolorable subgraph of an extended P4-laden graph.

In what follows, we denote by Kn a complete graph
with n vertices. An induced path with n vertices is denoted
by Pn . An induced cycle with n vertices is denoted by Cn .
A graph G is empty if V (G) = ∅. In general, we assume for
a graph G that |V (G)| = n and |E(G)| = m.

2. Extended P4-laden graphs

Using modular decomposition, Giakoumakis [12] proved
an important structural characterization for extended P4-
laden graphs by special graphs, called here pseudo-splits
and quasi-spiders.

Given a split graph G with vertex set partition (S,C),
where S is a stable set and C is a clique, we say that G
is original if every vertex in S has a non-neighbor in C
and every vertex in C has a neighbor in S . We say that
a graph G is a pseudo-split if its vertex set has a partition
(S,C,R) such that S induces a stable set, C induces a
clique, S∪C induces an original split graph (where S∪C �=
∅) and every vertex of R is adjacent to every vertex of C
and non-adjacent to every vertex of S .

We can see S , C and R respectively as the legs, the
body and the head of the pseudo-split. Observe that R can
be empty and, in this case, we say that the pseudo-split is
headless. Also notice that the complement of a pseudo-split
is also a pseudo-split.

We say that a pseudo-split G is a spider (S,C,R) if
|S| = |C| = k, S = {s1, . . . , sk} and C = {c1, . . . , ck}, where

(a) si is adjacent to c j if and only if i = j, for every 1 �
i, j � k (thin spider); or

(b) si is adjacent to c j if and only if i �= j, for every 1 �
i, j � k (thick spider).

Notice that the complement of a thin spider is a thick spi-
der, and vice-versa.

A quasi-spider is a graph obtained by a spider (S,C,R)

with at most one vertex from S ∪ C replaced by K2 or
K2 (keeping the neighborhood). Clearly, every spider is a
quasi-spider.

The disjoint union (or simply union) of two graphs G1
and G2 is the graph G1 ∪ G2, where V (G1 ∪ G2) = V (G1)∪

V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). The join of two
graphs G1 and G2 is the graph G1 + G2, where V (G1 +
G2) = V (G1) ∪ V (G2) and E(G1 + G2) = E(G1) ∪ E(G2) ∪
{xy | x ∈ V (G1), y ∈ V (G2)}.

Theorem 2.1. (See [12].) A graph G is extended P4-laden if and
only if exactly one of the following conditions is satisfied:

(a) G is the disjoint union of two non-empty extended P4-
laden graphs.

(b) G is the join of two non-empty extended P4-laden graphs.
(c) G is a quasi-spider such that its head induces an extended

P4-laden graph.
(d) G is a pseudo-split such that its head induces an extended

P4-laden graph.
(e) G is isomorphic to C5 , P5 or P5 .
(f) G has only one vertex or V (G) = ∅.

This theorem suggests a natural decomposition for ex-
tended P4-laden graphs. Let TG be the tree decomposition
of an extended P4-laden graph G . Every node u of TG rep-
resents an induced subgraph G(u) of G . The root r of T G
represents the original graph G = G(r). The leaves are only
C5, P5, P5, pseudo-splits without head, quasi-spiders with-
out head or a single vertex; in addition, leaves constitute
a partition of V (G). The non-leaf nodes of T G are called
internal. In case (a) (resp. (b)) of the above theorem, an in-
ternal node is the disjoint union (resp. join) of its children.
In case (c) (resp. (d)) of the above theorem, if R �= ∅, an in-
ternal node with have S ∪ C and R as its children. From
[12], the tree TG is unique up to isomorphism and can be
obtained in O (n + m) time.

3. (k, �)-cocoloring extended P4-laden graphs for
k, �� 2

In this section, we present a polynomial time algo-
rithm to recognize (k, �)-cocolorable extended P4-laden
graphs for k, � � 2. The key idea is, given an extended P4-
laden graph G , to obtain a cograph G∗ by removing all
induced P4’s from G . We prove that, if k, � � 2, G is (k, �)-
cocolorable if and only if G∗ is (k, �)-cocolorable. Since
recognizing (k, �)-cocolorable cographs is solvable in poly-
nomial time (and even in O (n) time if k, � are fixed), we
are done (see [3,5]).

Clearly, a graph G is extended P4-laden if and only if G
is extended P4-laden, and a graph G is (k, �)-cocolorable if
and only if G is (�,k)-cocolorable.

Let G be an extended P4-laden graph. Let T G be
the decomposition tree of G . To obtain the cograph G∗ ,
we will apply the rules below for each node u of T G ,
where G(u) is the induced subgraph of G represented
by u. To ease the description of the rules, consider graph
P5 with edge set {ab,bc, cd,de}, graph P5 with edge
set {ac,ad,ae,bd,be, ce}, and graph C5 with edge set
{ab,bc, cd,de,ae}.

Rule 1: If G(u) is isomorphic to C5: Add edge ac, remove
edges ae, cd, add a new vertex f adjacent to e.

Rule 2: If G(u) is isomorphic to P5: Remove edge bc.
Rule 3: If G(u) is isomorphic to P5: Add edge bc.
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