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This paper provides a proof of NExpTime-completeness of the satisfiability problem for
the logic K(En) (modal logic K with global counting operators), where number constraints
are coded in binary. Hitherto the tight complexity bounds (namely ExpTime-completeness)
have been established only for this logic with number restrictions coded in unary. The
upper bound is established by showing that K(En) has the exponential-size model property
and the lower bound follows from reducibility of exponential bounded tiling problem
to K(En).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Counting modalities were first introduced by Fine in [1]
under the name of graded modalities. They allowed express-
ing a number of successors of a particular world, at which
a certain formula holds. In particular, a formula �=n�
expresses the fact that the current world has exactly n
successors. In [2] a filtration-based proof of decidability of
several graded modal logics is provided. However, no com-
plexity results are presented. A first systematic treatment
of the complexity of various graded modal logics, for both
unary and binary coding of numerical subscripts, can be
found in [3].

In [4] Areces et al. recalled modal logics with counting
operators (MLC). In these logics global counting operators
E>n , E<n and E=n were added to a modal language with
the ordinary modalities. Global counting operators increase
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the expressive power of a logic by allowing the definition
of nominals, the universal modality, and counting the car-
dinality of a domain (by a formula E=n�). It also enables
the formalisation of natural language queries that involve
numbers.

In terms of computational complexity, tight bounds
were established for MLC with number constraints coded
in unary. In particular, [5] states and [4] recalls ExpTime-
completeness. However, the bounds for MLC with num-
ber constraints coded in binary have so far remained loose.
In [4] ExpTime-hardness and membership in 2NExpTime is
recalled, which leaves room for a tight result.

In this paper we prove NExpTime-completeness for the
logic with number constraints coded in binary. In Section 2
we provide a characterisation of MLC , which we present
under the name K(En). In Section 3 we establish an up-
per bound by proving that K(En) has the exponential-size
model property. Section 4 is devoted to the reduction of
the exponential bounded tiling problem to K(En), which re-
sults in NExpTime-hardness of the logic. A brief summary
of the paper and concluding remarks are provided in Sec-
tion 5.
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2. The logic K(En)

First, we define the language of K(En). Let prop =
{p1, p2, . . .} be a countable set of propositional letters. We
define a set form of formulas of K(En) as follows, where
p ∈ prop, ϕ,ψ ∈ form, n ∈N:

form ::= � | p | ¬ϕ | ϕ ∧ ψ | �ϕ | E>nϕ.

Other Boolean operators and the � operator are defined
in a standard way. Moreover, we introduce two additional
counting operators E<n and E=n:

E<n+1ϕ := ¬E>nϕ,

E=n+1ϕ := E>nϕ ∧ ¬E>n+1ϕ,

E=0ϕ := ¬E>0ϕ.

The logic K(En) allows encoding the universal modality A
as: Aϕ := E=0¬ϕ .

A model for K(En) is a triple 〈W , R, V 〉, where W is a
non-empty set whose elements are usually called worlds,
R is a binary relation on W , and V : prop → P(W ) is
a valuation function assigning to each p ∈ prop a set of
worlds in which p holds. Given a model 〈W , R, V 〉 and
w ∈ W , the semantics of K(En) is defined as follows:

M, w |	 p iff w ∈ V (p), p ∈ prop,

M, w |	 ¬ϕ iff M, w 
|	 ϕ,

M, w |	 ϕ ∧ ψ iff M, w |	 ϕ and M, w |	 ψ

M, w |	 �ϕ iff there exists v ∈ W such that

w R v and M, v |	 ϕ,

M, w |	 E>nϕ iff Card
({v | M, v |	 ϕ}) > n,

where Card(A) denotes the cardinality of the set A.

3. Membership in NEXPTIME

Membership in NExpTime is shown by proving the
exponential-size model property. Membership in NExpTime

also follows from the existence of a tableau algorithm
running in NExpTime [6] or the existence of a standard
translation from K(En) to C2 (the two-variable fragment
of first order logic with counting quantifiers) where num-
ber constraints are coded in binary, which was proven to
be NExpTime-complete [7]. An advantage of providing a di-
rect proof of the finite model property is obtaining precise
bounds of the sizes of models.

Lemma 1 (Finite Model Property). Let ϕ be any K(En) formula.
If ϕ has a satisfying model, it also has a satisfying model of the
size not exceeding 2Card(Sub(ϕ)) · (n + 1), where Sub(ϕ) is the
set of all subformulae of ϕ and n = max{m: E>mψ ∈ Sub(ϕ)}.

Proof. Let ϕ be a formula satisfiable on a (possibly infi-
nite) model M = 〈W , R, V 〉. We show that there exists a
finite model M′ = 〈W ′, R ′, V ′〉 on which ϕ is satisfiable.

We proceed in two steps. In the first step we exploit
a filtration-like method to divide the universe W into a
finite number of equivalence classes. We fix the equiva-
lence relation �Sub(ϕ) in the following way: w �Sub(ϕ) v
iff for all ψ ∈ Sub(ϕ) we have M, w |	 ψ iff M, v |	 ψ . It

is straightforward that there are only finitely many such
equivalence classes, namely 2Card(Sub(ϕ)) many.

In the second step we abandon the ordinary filtra-
tion procedure. Instead of merging all worlds from the
equivalence classes, we reduce the cardinality of each
class in the following manner. Let [w] ⊆ W be an ar-
bitrary �Sub(ϕ)-equivalence class. If Card([w]) > n + 1
then we delete all but n + 1 arbitrary worlds from [w]. If
Card([w]) � n + 1 then we leave [w] unchanged. Hence-
forth, we denote such a reduct of [w] as [w]′ . Next,
from each reduced equivalence class [w]′ we pick an ar-
bitrary representative w0. We set a new model M′ =
〈W ′, R ′, V ′〉, where W ′ = ⋃{[w]′ | [w] ∈ W /�Sub(ϕ)

}, R ′ =
R � W ′ ∪ ⋃

[w],[v]∈W /�Sub(ϕ)
{(w, v0) | w ∈ [w]′ and there

exists v ∈ [v] \ [v]′ such that R(w, v) and v0 ∈ [v]′}, and
V ′ = V � W ′ .

The proof that M′ is a model for ϕ is by induction
on the complexity of the elements of Sub(ϕ). The Boolean
cases are obvious and follow directly from the definition of
W ′ and V ′ .

The � case is proven in the following way. Suppose
that a formula �ψ is satisfiable on M. It means that
there exists a w ∈ W such that M, w |	 �ψ . We pick
an arbitrary ŵ ∈ [w]′ . By definition of �Sub(ϕ) it follows
that M, ŵ |	 �ψ . Consequently, we can find v ∈ W such
that (ŵ, v) ∈ R and M, v |	 ψ . If v ∈ [v]′ then we also
have M′, ŵ |	 �ψ . Otherwise, by definition of �Sub(ϕ)

and R ′ there exists v0 ∈ [v]′ such that (ŵ, v0) ∈ R ′ and
M, v0 |	 ψ . Therefore, �ψ is satisfiable on M.

Now, assume that a formula E>mψ is satisfied by M.
It means that there exist more than m worlds in which
ψ holds. Two cases may occur. Either ψ holds in ele-
ments of (at least one) equivalence class [w] such that
Card([w]) > n. Then, by the construction of [w]′ , we ob-
tain that E>mψ is satisfied by M′ . Otherwise ψ holds in
elements of the equivalence classes [wi1 ], . . . , [wik ] such

that Card([wi j ]) � n and
∑k

j=1 Card([wi j ]) > n. But by
construction of [wi j ]′ these classes remained unchanged

in W ′ , therefore
∑k

j=1 Card([wi j ]′) > n. It follows that
E>mψ is satisfied by M′ . The reduction of the size of W
cannot disturb satisfiability of the formulas E<mψ on M′ .

Since Card(W /�Sub(ϕ)
) = 2Card(Sub(ϕ)) and for each [w]′

obtained from [w] ∈ W /�Sub(ϕ)
Card([w]′) � n + 1, it is

clear that Card(W ′) � 2Card(Sub(ϕ)) · (n + 1). This completes
the proof. �

We can conclude:

Theorem 2. (See [7,6].) The satisfiability problem for modal
the logic K(En) with number constraints coded in binary is in
NExpTime.

4. NEXPTIME-hardness

NExpTime-hardness is proven by reducing a standard
exponential bounded tiling problem [8].

By a tile type T we understand a quadruple of colours
(leftT ,upT , rightT ,downT ). Given a finite set of tile-types
T = {T0, . . . , Tm} and a finite square grid k×k, the bounded
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