

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Satisfiability problem for modal logic with global counting operators coded in binary is NExpTime-complete

Michał Zawidzki a,b,*, Renate A. Schmidt , Dmitry Tishkovsky a

ARTICLE INFO

Article history:
Received 25 June 2012
Received in revised form 31 August 2012
Accepted 25 September 2012
Available online 26 September 2012
Communicated by L. Viganò

Keywords:
Modal logic
Counting quantifiers
Computational complexity
Tiling problem
Finite model property
Theory of computation

ABSTRACT

This paper provides a proof of NEXPTIME-completeness of the satisfiability problem for the logic $K(E_n)$ (modal logic K with global counting operators), where number constraints are coded in binary. Hitherto the tight complexity bounds (namely ExpTime-completeness) have been established only for this logic with number restrictions coded in unary. The upper bound is established by showing that $K(E_n)$ has the exponential-size model property and the lower bound follows from reducibility of exponential bounded tiling problem to $K(E_n)$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Counting modalities were first introduced by Fine in [1] under the name of *graded modalities*. They allowed expressing a number of successors of a particular world, at which a certain formula holds. In particular, a formula $\diamondsuit_{=n} \top$ expresses the fact that the current world has exactly n successors. In [2] a filtration-based proof of decidability of several graded modal logics is provided. However, no complexity results are presented. A first systematic treatment of the complexity of various graded modal logics, for both unary and binary coding of numerical subscripts, can be found in [3].

In [4] Areces et al. recalled modal logics with counting operators (\mathcal{MLC}). In these logics global counting operators $\mathsf{E}_{>n}$, $\mathsf{E}_{< n}$ and $\mathsf{E}_{=n}$ were added to a modal language with the ordinary modalities. Global counting operators increase

E-mail address: michal.zawidzki@gmail.com (M. Zawidzki).

the expressive power of a logic by allowing the definition of nominals, the universal modality, and counting the cardinality of a domain (by a formula $E_{=n} \top$). It also enables the formalisation of natural language queries that involve numbers.

In terms of computational complexity, tight bounds were established for \mathcal{MLC} with number constraints coded in unary. In particular, [5] states and [4] recalls ExpTIME-completeness. However, the bounds for \mathcal{MLC} with number constraints coded in binary have so far remained loose. In [4] ExpTIME-hardness and membership in 2NExpTIME is recalled, which leaves room for a tight result.

In this paper we prove NExpTime-completeness for the logic with number constraints coded in binary. In Section 2 we provide a characterisation of \mathcal{MLC} , which we present under the name $K(E_n)$. In Section 3 we establish an upper bound by proving that $K(E_n)$ has the *exponential-size model property*. Section 4 is devoted to the reduction of the exponential *bounded tiling problem* to $K(E_n)$, which results in NExpTime-hardness of the logic. A brief summary of the paper and concluding remarks are provided in Section 5.

^a School of Computer Science, The University of Manchester, United Kingdom

^b Department of Logic, University of Lodz, Poland

^{*} Corresponding author at: Department of Logic, University of Lodz,

2. The logic $K(E_n)$

First, we define the language of $K(E_n)$. Let $PROP = \{p_1, p_2, \ldots\}$ be a countable set of propositional letters. We define a set FORM of formulas of $K(E_n)$ as follows, where $p \in PROP$, φ , $\psi \in FORM$, $n \in \mathbb{N}$:

FORM ::=
$$\top \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \Diamond \varphi \mid \mathsf{E}_{>n} \varphi$$
.

Other Boolean operators and the \square operator are defined in a standard way. Moreover, we introduce two additional counting operators $\mathsf{E}_{< n}$ and $\mathsf{E}_{= n}$:

$$\begin{split} \mathsf{E}_{< n+1} \varphi &:= \neg \mathsf{E}_{> n} \varphi, \\ \mathsf{E}_{= n+1} \varphi &:= \mathsf{E}_{> n} \varphi \wedge \neg \mathsf{E}_{> n+1} \varphi, \\ \mathsf{E}_{= 0} \varphi &:= \neg \mathsf{E}_{> 0} \varphi. \end{split}$$

The logic $K(E_n)$ allows encoding the universal modality A as: $A\varphi := E_{=0} \neg \varphi$.

A model for $K(E_n)$ is a triple $\langle W,R,V\rangle$, where W is a non-empty set whose elements are usually called worlds, R is a binary relation on W, and $V:PROP \to \mathcal{P}(W)$ is a valuation function assigning to each $p \in PROP$ a set of worlds in which p holds. Given a model $\langle W,R,V\rangle$ and $w \in W$, the semantics of $K(E_n)$ is defined as follows:

$$\begin{split} \mathfrak{M}, w &\models p & \text{iff} \quad w \in V(p), \ p \in \texttt{PROP}, \\ \mathfrak{M}, w &\models \neg \varphi & \text{iff} \quad \mathfrak{M}, w \not\models \varphi, \\ \mathfrak{M}, w &\models \varphi \land \psi & \text{iff} \quad \mathfrak{M}, w \models \varphi \text{ and } \mathfrak{M}, w \models \psi \\ \mathfrak{M}, w &\models \Diamond \varphi & \text{iff} \quad \text{there exists } v \in W \text{ such that} \\ & \qquad \qquad w R v \text{ and } \mathfrak{M}, v \models \varphi, \\ \mathfrak{M}, w &\models \mathsf{E}_{>n} \varphi & \text{iff} \quad \mathsf{Card}\big(\{v \mid \mathfrak{M}, v \models \varphi\}\big) > n, \end{split}$$

where Card(A) denotes the cardinality of the set A.

3. Membership in NEXPTIME

Membership in NExpTime is shown by proving the exponential-size model property. Membership in NExpTime also follows from the existence of a tableau algorithm running in NExpTime [6] or the existence of a standard translation from $K(E_n)$ to \mathcal{C}^2 (the two-variable fragment of first order logic with counting quantifiers) where number constraints are coded in binary, which was proven to be NExpTime-complete [7]. An advantage of providing a direct proof of the finite model property is obtaining precise bounds of the sizes of models.

Lemma 1 (Finite Model Property). Let φ be any $K(E_n)$ formula. If φ has a satisfying model, it also has a satisfying model of the size not exceeding $2^{\operatorname{Card}(\operatorname{Sub}(\varphi))} \cdot (n+1)$, where $\operatorname{Sub}(\varphi)$ is the set of all subformulae of φ and $n=\max\{m\colon E_{>m}\psi\in\operatorname{Sub}(\varphi)\}$.

Proof. Let φ be a formula satisfiable on a (possibly infinite) model $\mathfrak{M} = \langle W, R, V \rangle$. We show that there exists a finite model $\mathfrak{M}' = \langle W', R', V' \rangle$ on which φ is satisfiable.

We proceed in two steps. In the first step we exploit a filtration-like method to divide the universe W into a finite number of equivalence classes. We fix the equivalence relation $\leadsto_{\operatorname{Sub}(\varphi)}$ in the following way: $w \leadsto_{\operatorname{Sub}(\varphi)} v$ iff for all $\psi \in \operatorname{Sub}(\varphi)$ we have $\mathfrak{M}, w \models \psi$ iff $\mathfrak{M}, v \models \psi$. It

is straightforward that there are only finitely many such equivalence classes, namely $2^{\text{Card}(\text{Sub}(\varphi))}$ many.

In the second step we abandon the ordinary filtration procedure. Instead of merging all worlds from the equivalence classes, we reduce the cardinality of each class in the following manner. Let $[w] \subseteq W$ be an arbitrary $\leadsto_{\operatorname{Sub}(\varphi)}$ -equivalence class. If $\operatorname{Card}([w]) > n+1$ then we delete all but n+1 arbitrary worlds from [w]. If $\operatorname{Card}([w]) \leqslant n+1$ then we leave [w] unchanged. Henceforth, we denote such a reduct of [w] as [w]'. Next, from each reduced equivalence class [w]' we pick an arbitrary representative w_0 . We set a new model $\mathfrak{M}' = \langle W', R', V' \rangle$, where $W' = \bigcup \{[w]' \mid [w] \in W/_{\leadsto_{\operatorname{Sub}(\varphi)}}\}$, $R' = R \upharpoonright W' \cup \bigcup_{[w], [v] \in W/_{\leadsto_{\operatorname{Sub}(\varphi)}}}\}$ $(w, v_0) \mid w \in [w]'$ and there exists $v \in [v] \setminus [v]'$ such that R(w, v) and $v_0 \in [v]'$, and $v' = V \upharpoonright W'$.

The proof that \mathfrak{M}' is a model for φ is by induction on the complexity of the elements of $\operatorname{Sub}(\varphi)$. The Boolean cases are obvious and follow directly from the definition of W' and V'.

The \diamondsuit case is proven in the following way. Suppose that a formula $\diamondsuit\psi$ is satisfiable on \mathfrak{M} . It means that there exists a $w \in W$ such that $\mathfrak{M}, w \models \diamondsuit\psi$. We pick an arbitrary $\hat{w} \in [w]'$. By definition of $\leadsto_{\operatorname{Sub}(\varphi)}$ it follows that $\mathfrak{M}, \hat{w} \models \diamondsuit\psi$. Consequently, we can find $v \in W$ such that $(\hat{w}, v) \in R$ and $\mathfrak{M}, v \models \psi$. If $v \in [v]'$ then we also have $\mathfrak{M}', \hat{w} \models \diamondsuit\psi$. Otherwise, by definition of $\leadsto_{\operatorname{Sub}(\varphi)}$ and R' there exists $v_0 \in [v]'$ such that $(\hat{w}, v_0) \in R'$ and $\mathfrak{M}, v_0 \models \psi$. Therefore, $\diamondsuit\psi$ is satisfiable on \mathfrak{M} .

Now, assume that a formula $\mathsf{E}_{>m}\psi$ is satisfied by \mathfrak{M} . It means that there exist more than m worlds in which ψ holds. Two cases may occur. Either ψ holds in elements of (at least one) equivalence class [w] such that $\mathsf{Card}([w]) > n$. Then, by the construction of [w]', we obtain that $\mathsf{E}_{>m}\psi$ is satisfied by \mathfrak{M}' . Otherwise ψ holds in elements of the equivalence classes $[w_{i_1}], \ldots, [w_{i_k}]$ such that $\mathsf{Card}([w_{i_j}]) \leqslant n$ and $\sum_{j=1}^k \mathsf{Card}([w_{i_j}]) > n$. But by construction of $[w_{i_j}]'$ these classes remained unchanged in W', therefore $\sum_{j=1}^k \mathsf{Card}([w_{i_j}]') > n$. It follows that $\mathsf{E}_{>m}\psi$ is satisfied by \mathfrak{M}' . The reduction of the size of W cannot disturb satisfiability of the formulas $\mathsf{E}_{< m}\psi$ on \mathfrak{M}' .

Since $\operatorname{Card}(W/_{\longleftrightarrow_{\operatorname{Sub}(\varphi)}}) = 2^{\operatorname{Card}(\operatorname{Sub}(\varphi))}$ and for each [w]' obtained from $[w] \in W/_{\longleftrightarrow_{\operatorname{Sub}(\varphi)}} \operatorname{Card}([w]') \leqslant n+1$, it is clear that $\operatorname{Card}(W') \leqslant 2^{\operatorname{Card}(\operatorname{Sub}(\varphi))} \cdot (n+1)$. This completes the proof. \square

We can conclude:

Theorem 2. (See [7,6].) The satisfiability problem for modal the logic $K(E_n)$ with number constraints coded in binary is in NEXPTIME.

4. NEXPTIME-hardness

NEXPTIME-hardness is proven by reducing a standard exponential *bounded tiling problem* [8].

By a tile type T we understand a quadruple of colours (left $_T$, up $_T$, right $_T$, down $_T$). Given a finite set of tile-types $T = \{T_0, \ldots, T_m\}$ and a finite square grid $k \times k$, the bounded

Download English Version:

https://daneshyari.com/en/article/427618

Download Persian Version:

https://daneshyari.com/article/427618

<u>Daneshyari.com</u>