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This paper provides a proof of NEXPTIME-completeness of the satisfiability problem for
the logic K(E,) (modal logic K with global counting operators), where number constraints
are coded in binary. Hitherto the tight complexity bounds (namely EXPTIME-completeness)
have been established only for this logic with number restrictions coded in unary. The
upper bound is established by showing that K(E,;) has the exponential-size model property

and the lower bound follows from reducibility of exponential bounded tiling problem
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1. Introduction

Counting modalities were first introduced by Fine in [1]
under the name of graded modalities. They allowed express-
ing a number of successors of a particular world, at which
a certain formula holds. In particular, a formula O_,T
expresses the fact that the current world has exactly n
successors. In [2] a filtration-based proof of decidability of
several graded modal logics is provided. However, no com-
plexity results are presented. A first systematic treatment
of the complexity of various graded modal logics, for both
unary and binary coding of numerical subscripts, can be
found in [3].

In [4] Areces et al. recalled modal logics with counting
operators (M LC). In these logics global counting operators
E-n, E<; and E—, were added to a modal language with
the ordinary modalities. Global counting operators increase
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the expressive power of a logic by allowing the definition
of nominals, the universal modality, and counting the car-
dinality of a domain (by a formula E_, T). It also enables
the formalisation of natural language queries that involve
numbers.

In terms of computational complexity, tight bounds
were established for M LC with number constraints coded
in unary. In particular, [5] states and [4] recalls EXPTIME-
completeness. However, the bounds for MLC with num-
ber constraints coded in binary have so far remained loose.
In [4] ExpTiME-hardness and membership in 2NEXPTIME is
recalled, which leaves room for a tight result.

In this paper we prove NExpPTIME-completeness for the
logic with number constraints coded in binary. In Section 2
we provide a characterisation of M /LC, which we present
under the name K(E,). In Section 3 we establish an up-
per bound by proving that K(E,) has the exponential-size
model property. Section 4 is devoted to the reduction of
the exponential bounded tiling problem to K(E,), which re-
sults in NExPTimE-hardness of the logic. A brief summary
of the paper and concluding remarks are provided in Sec-
tion 5.
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2. The logic K(E,)

First, we define the language of K(E,). Let PROP =
{p1,p2,...} be a countable set of propositional letters. We
define a set ForM of formulas of K(E,) as follows, where
D € PROP, ¢, Y € FORM, n € N:

FORM:=T |p| =@ @ A} | C@ | Esng.

Other Boolean operators and the [0 operator are defined
in a standard way. Moreover, we introduce two additional
counting operators E_, and E_p:

E<n+1§0 = _'E>n§07
E—nt19 . =E-n@ A —=Espt19,
E—op := —E-o¢.

The logic K(E,) allows encoding the universal modality A
as: Ag :=E_o—¢.

A model for K(Ep) is a triple (W, R, V), where W is a
non-empty set whose elements are usually called worlds,
R is a binary relation on W, and V : pROP — P(W) is
a valuation function assigning to each p € PrRoP a set of
worlds in which p holds. Given a model (W,R, V) and
w € W, the semantics of K(Ep) is defined as follows:

MwkEp iff we V(p), p €ProP,

M wE=-p iff 9, w =@,

MweEeAy iff MwiEgandM,wE=y

M, wE=<p iff there exists v € W such that
wRv and M, v = ¢,

M wEE.,@ iff Card({v|9M,vEe})>n,

where Card(A) denotes the cardinality of the set A.
3. Membership in NEXPTIME

Membership in NExPTIME is shown by proving the
exponential-size model property. Membership in NEXPTIME
also follows from the existence of a tableau algorithm
running in NEXPTIME [6] or the existence of a standard
translation from K(E,) to C? (the two-variable fragment
of first order logic with counting quantifiers) where num-
ber constraints are coded in binary, which was proven to
be NExPTIME-complete [7]. An advantage of providing a di-
rect proof of the finite model property is obtaining precise
bounds of the sizes of models.

Lemma 1 (Finite Model Property). Let ¢ be any K(E,) formula.
If @ has a satisfying model, it also has a satisfying model of the
size not exceeding 2629GUb@) . (n 4 1), where Sub() is the
set of all subformulae of ¢ and n = max{m: E-mv € Sub(¢p)}.

Proof. Let ¢ be a formula satisfiable on a (possibly infi-
nite) model 9 = (W, R, V). We show that there exists a
finite model 9" = (W', R, V') on which ¢ is satisfiable.
We proceed in two steps. In the first step we exploit
a filtration-like method to divide the universe W into a
finite number of equivalence classes. We fix the equiva-
lence relation «~gyp(y) in the following way: w «~sup(g) v
iff for all ¥ € Sub(¢) we have M, w =y iff M v =¢. It

is straightforward that there are only finitely many such
equivalence classes, namely 2C2rd(Sub(@) many,

In the second step we abandon the ordinary filtra-
tion procedure. Instead of merging all worlds from the
equivalence classes, we reduce the cardinality of each
class in the following manner. Let [w] C W be an ar-
bitrary e~ sup(g)-equivalence class. If Card([w]) > n + 1
then we delete all but n + 1 arbitrary worlds from [w]. If
Card([w]) <n+ 1 then we leave [w] unchanged. Hence-
forth, we denote such a reduct of [w] as [w]. Next,
from each reduced equivalence class [w] we pick an ar-
bitrary representative wg. We set a new model 9V =
(W, R, V'), where W' =J{[w]| [w] € W/ s R =
R WU U[W]![v]ew/ws , {(w,vg) | w € [w]" and there

ub(p)

exists v € [v]\ [v] such that R(w,v) and vg € [v]'}, and
V=V w.

The proof that 9 is a model for ¢ is by induction
on the complexity of the elements of Sub(¢). The Boolean
cases are obvious and follow directly from the definition of
W’ and V.

The < case is proven in the following way. Suppose
that a formula <y is satisfiable on 21. It means that
there exists a w € W such that 9, w = Oy, We pick
an arbitrary w € [w]’. By definition of evsup(p) it follows
that 91, w = O, Consequently, we can find v € W such
that (W,v) € R and 9, v = . If v € [v]’ then we also
have 90V, W = Ov. Otherwise, by definition of «~gyp(e)
and R’ there exists vg € [v]’ such that (W, vg) € R’ and
M, vo = ¢. Therefore, O is satisfiable on 9.

Now, assume that a formula E.p3 is satisfied by 1.
It means that there exist more than m worlds in which
¥ holds. Two cases may occur. Either v holds in ele-
ments of (at least one) equivalence class [w] such that
Card([w]) > n. Then, by the construction of [w], we ob-
tain that E. v is satisfied by 2. Otherwise ¥ holds in
elements of the equivalence classes [wy], ..., [w;,] such
that Card([w;;])) <n and Y5_, Card([w;;]) > n. But by
construction of [Wjj]/ these classes remained unchanged

in W’, therefore Z?‘:] Card([w,-].]/) > n. It follows that
E-mV is satisfied by 9V. The reduction of the size of W
cannot disturb satisfiability of the formulas E_,v on 9.

Since Card(W /cugyy)) = 2Card(Sub(®) and for each [w]’
obtained from [w] e W/MSub(w)Card([w]/) <n+1,itis
clear that Card(W’) < 2Card(Sub®) . (n 4+ 1). This completes
the proof. O

We can conclude:

Theorem 2. (See [7,6].) The satisfiability problem for modal
the logic K(E,) with number constraints coded in binary is in
NEXPTIME.

4. NEXPTIME-hardness

NEXPTIME-hardness is proven by reducing a standard
exponential bounded tiling problem [8].

By a tile type T we understand a quadruple of colours
(leftr, upy, rightr, downr). Given a finite set of tile-types
T={To,..., Tm} and a finite square grid k x k, the bounded
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