
Information Processing Letters 112 (2012) 562–565

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Doubly-Constrained LCS and Hybrid-Constrained LCS problems revisited

Effat Farhana a,b, M. Sohel Rahman a,∗
a A�EDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh
b Department of CSE, AUST, Dhaka-1208, Bangladesh

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2011
Received in revised form 14 April 2012
Accepted 18 April 2012
Available online 21 April 2012
Communicated by J. Torán

Keywords:
Finite automata
Longest common subsequence
Algorithms
Combinatorial problems

We revisit two recently studied variants of the classic Longest Common Subsequence (LCS)
problem, namely, the Doubly-Constrained LCS (DC-LCS) and Hybrid-Constrained LCS (HC-
LCS) problems. We present finite automata based algorithms for both problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A subsequence of a given sequence s is obtained by
deleting zero or more symbols from s. Given two se-
quences, the longest common subsequence (LCS) problem
is to find a common subsequence whose length is the
longest. The classic dynamic programming algorithm to
compute an LCS of two input strings was invented by Wag-
ner and Fischer [13]. A constrained variant of the longest
common subsequence (CLCS) problem, was first proposed
by Tsai [12], where the computed LCS must contain a
specific constraint (input) string as a subsequence. Subse-
quently, this problem was addressed in [4,9,6,10]. Among
other interesting constrained variants of LCS, repetition-free
LCS [1], exemplar LCS [2], etc., may be cited.

In this paper, we study two new variants of the CLCS
problem, namely, the “Doubly-Constrained LCS (DC-LCS)”
and the “Hybrid-Constrained LCS (HC-LCS)” problems.
These two problems were very recently introduced and
studied in [3] and [5], respectively. The problems are for-
mally defined below.

* Corresponding author.
E-mail addresses: effat34@gmail.com (E. Farhana),

msrahman@cse.buet.ac.bd (M.S. Rahman).

Problem 1 (DC-LCS). Given two input strings s1, s2, a set of
constraint patterns Cs and an occurrence constraint func-
tion Co :Σ → N , assigning an upper bound on the number
of occurrences of each symbol σ ∈ Σ , the goal of DC-LCS
is to find an LCS s of s1, s2 such that s contains at most
Co(σ) occurrences of each symbol σ ∈ Σ and contains
each pattern in Cs as a subsequence.

Problem 2 (HC-LCS). Given two input strings s1, s2, two
constrained patterns P and Q , the goal of HC-LCS is to
compute an LCS s of s1 and s2 such that s is a superse-
quence of P but not of Q .

DC-LCS is NP-hard for arbitrary number of constraint
strings. Bonizzoni et al. [3] presented a fixed-parameter
algorithm where the parameter k is the length of the
solution. Their algorithm runs in kk T (k, |s1|, |s2|) time,
where T (k, |s1|, |s2|) = (|s1| log |s1|2O (k)) + O (|s1||s2||sc| ×
2O (k) log ˜|Σ |). Here, sc is one of the constraint patterns
in Cs and ˜Σ is the set containing the pairs (σ , i) for
each σ ∈ Σ and i ∈ {1, . . . , Co(σ)}. On the other hand,
for HC-LCS, two algorithms were presented in [5], of time
complexity O (n2|P ||Q |) and O (|P ||Q |r log log n + n log n),
respectively, where n = max(|s1|, |s2|) and r is the total
number of matches between s1, s2. Note that, in the worst

0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.04.007

http://dx.doi.org/10.1016/j.ipl.2012.04.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:effat34@gmail.com
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.ipl.2012.04.007

E. Farhana, M.S. Rahman / Information Processing Letters 112 (2012) 562–565 563

case, r = O (n2), hence the latter algorithm is slightly worse
than the former in the worst case. Notably, finite alpha-
bet was assumed in [5]. In this paper, we devise finite
automata based efficient algorithms for both DC-LCS and
HC-LCS problems.

2. Preliminaries

To formally describe our algorithms the following defi-
nitions are necessary.

Definition 1 (DFA). A Deterministic Finite Automaton
is represented by 5-tuple notation A = (Q ,Σ, δ,q0, F),
where A is the name of the DFA, Q its set of states, Σ

its set of input symbols, δ its transition function, q0 its
start state and F its set of accepting states.

Definition 2 (DASG). A Directed Acyclic Subsequence Graph
(DASG) for a string s of length n is a DFA that accepts the
language of all possible 2n subsequences of s. The DFA is
partial, that is, each state may not have a transition defined
for every symbol [8].

Definition 3 (DASG for multiple texts). Let S be a set of
strings T1, T2, . . . , Tk . We say that P is a subsequence of S
if and only if there exists i ∈ [1,k] such that P is a subse-
quence of Ti . DASG of S is a DFA A which accepts the lan-
guage L(A) = {w: i ∈ [1,k], w is a subsequence of Ti} [8].

Definition 4 (Common Subsequence Automaton). Given a set
of strings, a Common Subsequence Automaton (CSA) ac-
cepts all common subsequences of the given strings. The
language accepted by CSA is a subset of the language ac-
cepted by the DASG for a set of strings.

Definition 5 (Supersequence Automaton). A Supersequence
Automaton is a finite automaton which accepts the set of
all supersequences of a given string.

3. A fixed-parameter algorithm for DC-LCS

We present a fixed-parameter algorithm for the DC-LCS
problem where the parameter k is the size of a solution of
DC-LCS. The algorithm consists of five main stages.

Stage 1: In the first stage, we build a CSA automation
which accepts all common subsequences of two
input strings. This is done as follows. The DASG
M1 for the two input texts is constructed by us-
ing the online algorithm of [8]. Then common
subsequence automaton (CSA) of the two strings
is obtained from the DASG M1 by considering
the ‘match’ values computed for each state. The
value of ‘match’ corresponds to the number of
input strings that contain a given string, s as
a subsequence [8]. So, we will prune all states
whose ‘match’ value is less than two to get the
desired CSA M ′

1. In the worst case, R = O (n2)

states are generated for two input strings where
n = max(|s1|, |s2|).

Stage 2: In the second stage, we build |Cs| supersequence
automata Mi

2, 1 � i � |Cs|, for each constraint
pattern in si

c ∈ Cs using the algorithm in [11].
Clearly, Mi

2 will accept all the strings containing
the pattern si

c as a subsequence.
Stage 3: In the third stage, we intersect all |Cs| automata

Mi
2, 1 � i � |Cs|, with M ′

1 using the algorithm
in [11]. The resulting automaton accepts all com-
mon subsequences of s1, s2 including each pat-
tern of Cs as a subsequence. We call the resulting
automaton M3.

Stage 4: We consider character constraint in the fourth
stage. As the size of a solution of DC-LCS is k,
each σ ∈ Σ cannot occur more than k times.
For each σ ∈ Σ , we can construct a DFA which
accepts all strings having at most σocc occur-
rences, where σocc = min(k, Co(σ)). We intersect
all these |Σ | automata with M3 and denote it
by M4. The automaton M4 accepts the sequences
that are accepted by M3 but do not violate the
constraint function Co :Σ → N .

Stage 5: In the final stage, we have to select DC-LCS
of length k from M4. This can be done easily
by a modification of maximum length automata
(MaxLen automata) [11]. In brief, the algorithm
is a modification of the longest path algorithm
for DAGs (Directed Acyclic Graph) that works in
O (E) time, where E is the number of edges in
the input DAG. It can be easily modified to accept
strings in a DAG of length k. We call the resulting
automata, M5.

3.1. Time complexity

In our algorithm, we have used the online algorithm
of [8] for DASG construction and the algorithms in [11]
for supersequence and intersection automata construction.
For the sake of convenience, we assume that the length of
each input string is n. The length of each constraint pat-
tern may safely be assumed to be k since our solution size
is bounded by k. To analyze our algorithm, we need the
following result.

Lemma 1. (See [11].) Given DFA M1 and M2 having R and
n states respectively, a DFA M accepting language L(M) =
L(M1) ∩L(M2) can be constructed in O (|Σ |Rn) time. M has
at most Rn states and at most |Σ |Rn transitions. Moreover, if
M1 (or M2) is acyclic, then M is also acyclic.

We also state the following easy lemma.

Lemma 2. Given an integer N denoting the upper bound on oc-
currences of letter σ ∈ Σ , a DFA M accepting all the strings
containing at most N occurrences of σ can be built in O (N)

time and M has O (N) states.

Construction of CSA from DASG M1 requires O (|Σ |×
(R+ 2) + 2n) time [8], as the number of states of DASG is
R = O (n2) in the worst case. Building supersequence au-
tomaton for each Mi

2, 1 � i � |Cs|, needs O (|Σ |k) time.

Download English Version:

https://daneshyari.com/en/article/427710

Download Persian Version:

https://daneshyari.com/article/427710

Daneshyari.com

https://daneshyari.com/en/article/427710
https://daneshyari.com/article/427710
https://daneshyari.com

