Information Processing Letters 112 (2012) 562-565

www.elsevier.com/locate/ipl

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

Doubly-Constrained LCS and Hybrid-Constrained LCS problems revisited

Effat Farhana®P, M. Sohel Rahman #*

2 ACEDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh
b Department of CSE, AUST, Dhaka-1208, Bangladesh

ARTICLE INFO

ABSTRACT

Article history:

Received 23 September 2011

Received in revised form 14 April 2012
Accepted 18 April 2012

Available online 21 April 2012
Communicated by]. Tordn

Keywords:

Finite automata

Longest common subsequence
Algorithms

Combinatorial problems

We revisit two recently studied variants of the classic Longest Common Subsequence (LCS)
problem, namely, the Doubly-Constrained LCS (DC-LCS) and Hybrid-Constrained LCS (HC-
LCS) problems. We present finite automata based algorithms for both problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A subsequence of a given sequence s is obtained by
deleting zero or more symbols from s. Given two se-
quences, the longest common subsequence (LCS) problem
is to find a common subsequence whose length is the
longest. The classic dynamic programming algorithm to
compute an LCS of two input strings was invented by Wag-
ner and Fischer [13]. A constrained variant of the longest
common subsequence (CLCS) problem, was first proposed
by Tsai [12], where the computed LCS must contain a
specific constraint (input) string as a subsequence. Subse-
quently, this problem was addressed in [4,9,6,10]. Among
other interesting constrained variants of LCS, repetition-free
LCS [1], exemplar LCS [2], etc., may be cited.

In this paper, we study two new variants of the CLCS
problem, namely, the “Doubly-Constrained LCS (DC-LCS)”
and the “Hybrid-Constrained LCS (HC-LCS)” problems.
These two problems were very recently introduced and
studied in [3] and [5], respectively. The problems are for-
mally defined below.

* Corresponding author.
E-mail addresses: effat34@gmail.com (E. Farhana),
msrahman@cse.buet.ac.bd (M.S. Rahman).

0020-0190/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.04.007

Problem 1 (DC-LCS). Given two input strings s1, S, a set of
constraint patterns Cs and an occurrence constraint func-
tion C,: ¥ — N, assigning an upper bound on the number
of occurrences of each symbol o € X, the goal of DC-LCS
is to find an LCS s of sq, s such that s contains at most
Co(0) occurrences of each symbol o € X and contains
each pattern in Cs as a subsequence.

Problem 2 (HC-LCS). Given two input strings sj, Sz, two
constrained patterns P and Q, the goal of HC-LCS is to
compute an LCS s of s; and s, such that s is a superse-
quence of P but not of Q.

DC-LCS is NP-hard for arbitrary number of constraint
strings. Bonizzoni et al. [3] presented a fixed-parameter
algorithm where the parameter k is the length of the
solution. Their algorithm runs in kXT(k, |sq], |s2]) time,
where T(k, [si],s2]) = (Is1]log s112°®) + O (Is1Isallsc| x
290 Jog[X)). Here, s. is one of the constraint patterns
in Cs and 5 is the set containing the pairs (o,i) for
each 0 € ¥ and i € {1,...,Co(0)}. On the other hand,
for HC-LCS, two algorithms were presented in [5], of time
complexity O(n?|P||Q[) and O(|P||Q|rloglogn + nlogn),
respectively, where n = max(|s1[, |s2|) and r is the total
number of matches between si, s3. Note that, in the worst

http://dx.doi.org/10.1016/j.ipl.2012.04.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:effat34@gmail.com
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.ipl.2012.04.007

E. Farhana, M.S. Rahman / Information Processing Letters 112 (2012) 562-565 563

case, r = 0 (n?), hence the latter algorithm is slightly worse
than the former in the worst case. Notably, finite alpha-
bet was assumed in [5]. In this paper, we devise finite
automata based efficient algorithms for both DC-LCS and
HC-LCS problems.

2. Preliminaries

To formally describe our algorithms the following defi-
nitions are necessary.

Definition 1 (DFA). A Deterministic Finite Automaton
is represented by 5-tuple notation A = (Q, X, 3, qo, F),
where A is the name of the DFA, Q its set of states, X
its set of input symbols, § its transition function, qg its
start state and F its set of accepting states.

Definition 2 (DASG). A Directed Acyclic Subsequence Graph
(DASG) for a string s of length n is a DFA that accepts the
language of all possible 2" subsequences of s. The DFA is
partial, that is, each state may not have a transition defined
for every symbol [8].

Definition 3 (DASG for multiple texts). Let S be a set of
strings T1, T2, ..., Tx. We say that P is a subsequence of S
if and only if there exists i € [1, k] such that P is a subse-
quence of T;. DASG of S is a DFA A which accepts the lan-
guage L(A) ={w: ie[1,k], w is a subsequence of T;} [8].

Definition 4 (Common Subsequence Automaton). Given a set
of strings, a Common Subsequence Automaton (CSA) ac-
cepts all common subsequences of the given strings. The
language accepted by CSA is a subset of the language ac-
cepted by the DASG for a set of strings.

Definition 5 (Supersequence Automaton). A Supersequence
Automaton is a finite automaton which accepts the set of
all supersequences of a given string.

3. Afixed-parameter algorithm for DC-LCS

We present a fixed-parameter algorithm for the DC-LCS
problem where the parameter k is the size of a solution of
DC-LCS. The algorithm consists of five main stages.

Stage 1: In the first stage, we build a CSA automation
which accepts all common subsequences of two
input strings. This is done as follows. The DASG
M; for the two input texts is constructed by us-
ing the online algorithm of [8]. Then common
subsequence automaton (CSA) of the two strings
is obtained from the DASG M; by considering
the ‘match’ values computed for each state. The
value of ‘match’ corresponds to the number of
input strings that contain a given string, s as
a subsequence [8]. So, we will prune all states
whose ‘match’ value is less than two to get the
desired CSA M}. In the worst case, R = 0®n?)
states are generated for two input strings where
n=max(|s1], |sz2]).

Stage 2: In the second stage, we build |Cs| supersequence
automata M;, 1 <i < |G|, for each constraint
pattern in s. € Cs using the algorithm in [11].
Clearly, M; will accept all the strings containing
the pattern sé as a subsequence.

Stage 3: In the third stage, we intersect all |Cs| automata
M}, 1 <i<|Cs|, with M) using the algorithm
in [11]. The resulting automaton accepts all com-
mon subsequences of s, sy including each pat-
tern of Cs as a subsequence. We call the resulting
automaton Ms.

Stage 4: We consider character constraint in the fourth
stage. As the size of a solution of DC-LCS is k,
each o0 € ¥ cannot occur more than k times.
For each o € X, we can construct a DFA which
accepts all strings having at most o, occur-
rences, where o, = min(k, Co(0)). We intersect
all these |X'| automata with M3 and denote it
by M4. The automaton M4 accepts the sequences
that are accepted by M3 but do not violate the
constraint function C,: X — N.

Stage 5: In the final stage, we have to select DC-LCS
of length k from Mj. This can be done easily
by a modification of maximum length automata
(MaxLen automata) [11]. In brief, the algorithm
is a modification of the longest path algorithm
for DAGs (Directed Acyclic Graph) that works in
O(E) time, where E is the number of edges in
the input DAG. It can be easily modified to accept
strings in a DAG of length k. We call the resulting
automata, Ms.

3.1. Time complexity

In our algorithm, we have used the online algorithm
of [8] for DASG construction and the algorithms in [11]
for supersequence and intersection automata construction.
For the sake of convenience, we assume that the length of
each input string is n. The length of each constraint pat-
tern may safely be assumed to be k since our solution size
is bounded by k. To analyze our algorithm, we need the
following result.

Lemma 1. (See [11].) Given DFA My and M; having R and
n states respectively, a DFA M accepting language L(M) =
L(M1) N L(M>) can be constructed in O (| X'|Rn) time. M has
at most Rn states and at most | X'|Rn transitions. Moreover, if
M1 (or M3) is acyclic, then M is also acyclic.

We also state the following easy lemma.

Lemma 2. Given an integer N denoting the upper bound on oc-
currences of letter o € X, a DFA M accepting all the strings
containing at most N occurrences of o can be built in O (N)
time and M has O (N) states.

Construction of CSA from DASG M; requires O (| X x
(R +2) +2n) time [8], as the number of states of DASG is
R = 0(n?) in the worst case. Building supersequence au-
tomaton for each Mg, 1 <i< |G|, needs O(|X|k) time.

Download English Version:

https://daneshyari.com/en/article/427710

Download Persian Version:

https://daneshyari.com/article/427710

Daneshyari.com

https://daneshyari.com/en/article/427710
https://daneshyari.com/article/427710
https://daneshyari.com

