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We extend the definition of binary threshold sequences from Fermat quotients to Eu-
ler quotients modulo pr with odd prime p and r � 1. Under the condition of 2p−1 �≡ 1
(mod p2), we present exact values of the linear complexity by defining cyclotomic classes
modulo pn for all 1 � n � r. The linear complexity is very close to the period and is
of desired value for cryptographic purpose. We also present a lower bound on the linear
complexity for the case of 2p−1 ≡ 1 (mod p2).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For an odd prime p, integers r � 1 and u with
gcd(u, p) = 1, the Euler quotient Q pr (u) modulo pr is de-
fined as the unique integer with

Q pr (u) ≡ uϕ(pr) − 1

pr

(
mod pr),

0 � Q pr (u) � pr − 1,

where ϕ(−) is the Euler totient function, and we also de-
fine

Q pr (kp) = 0, k ∈ Z.

See, e.g., [1,5,14] for details.
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If r = 1, Q p(u) is just the Fermat quotient studied in [7,
9,13,15–18] and references therein. More recently, Fermat
quotients are studied from the viewpoint of cryptography,
see [2–4,6,8,13].

Motivated by the previous work [2–4], we define a fam-
ily of binary sequences (eu) by using the Euler quotient
Q pr (u) by

eu =
{

0, if 0 � Q pr (u)/pr < 1
2 ,

1, if 1
2 � Q pr (u)/pr < 1.

(1)

We note that (eu) is pr+1-periodic since Q pr (u) is a pr+1-
periodic sequence modulo pr by the fact

Q pr
(
u + kpr) ≡ Q pr (u) − kpr−1u−1 (

mod pr) (2)

for any integer k and u with gcd(u, p) = 1. In fact, for
such u, we have

Q pr
(
u + kpr) ≡ (u + kpr)ϕ(pr) − 1

pr

0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.04.011

http://dx.doi.org/10.1016/j.ipl.2012.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ymLdxn@126.com
mailto:ptczx@126.com
mailto:hulei@gucas.ac.cn
http://dx.doi.org/10.1016/j.ipl.2012.04.011


X. Du et al. / Information Processing Letters 112 (2012) 604–609 605

≡ uϕ(pr) − 1

pr
+ kϕ

(
pr)uϕ(pr)−1

+ kprϕ
(

pr)(ϕ(
pr) − 1

)
uϕ(pr)−2/2 + · · ·

+ (
kpr)ϕ(pr)−1

≡ uϕ(pr) − 1

pr
+ kϕ

(
pr)uϕ(pr)−1

≡ Q pr (u) − kpr−1u−1 (
mod pr).

For r = 1, linear complexity of (eu) defined in (1) was
investigated in [2]. The linear complexity is considered as a
primary quality measure for periodic sequences and plays
an important role in applications of sequences in cryp-
tography. A low linear complexity has turned out to be
undesirable for cryptographical applications. We recall that
the linear complexity L((su)) of a T -periodic sequence (su)

over the binary field F2 is the least order L of a linear re-
currence relation over F2

su+L = cL−1su+L−1 + · · · + c1su+1 + c0su for u � 0

which is satisfied by (su) and where c0 = 1, c1, . . . , cL−1 ∈
F2. The polynomial

M(x) = xL + cL−1xL−1 + · · · + c0 ∈ F2[x]
is called the minimal polynomial of (su). The generating
polynomial of (su) is defined by

s(x) = s0 + s1x + s2x2 + · · · + sT −1xT −1 ∈ F2[x].
It is easy to see that

M(x) = (
xT − 1

)
/gcd

(
xT − 1, s(x)

)
,

hence

L
(
(su)

) = T − deg
(
gcd

(
xT − 1, s(x)

))
, (3)

which is the degree of the minimal polynomial, see [11,19]
for a more detailed exposition.

We will extend the result of [2] to show the following
theorem.

Theorem 1. Let (eu) be the pr+1-periodic binary sequence de-
fined as in Eq. (1). If 2p−1 �≡ 1 (mod p2), then the linear com-
plexity L((eu)) of (eu) satisfies

L
(
(eu)

) =
⎧⎨
⎩

pr+1 − p, if p ≡ 1 (mod 4),

pr+1 − p, if p ≡ 3 (mod 4) and r is even,

pr+1 − 1, if p ≡ 3 (mod 4) and r is odd.

2. Auxiliary lemmas

In order to prove the theorem, we will define a par-
tition of the residue class ring modulo pn+1 with respect
to the Euler quotient Q pn (u) for 1 � n � r. We denote by
Zpn = {0,1, . . . , pn − 1} the residue class ring modulo pn

and by Z
∗
pn the unit group of Zpn for n � 1. Let

D(n)

l = {
u: 0 � u � pn+1 − 1, gcd(u, p) = 1, Q pn(u) = l

}

for l = 0,1, . . . , pn − 1 and n � 1. Thus, one can define (eu)

equivalently by

eu =
⎧⎨
⎩

0, if u ∈ D(r)
0 ∪ · · · ∪ D(r)

(pr−1)/2 ∪ pZpr ,

1, if u ∈ D(r)
(pr+1)/2 ∪ · · · ∪ D(r)

pr−1,

0 � u � pr+1 − 1,

where pZpr = {pa (mod pr): a = 0,1, . . . , pr − 1}.

Lemma 1. For all n � 1, let uD(n)

l = {uv (mod pn+1): v ∈
D(n)

l }. If u ∈ D(n)

l′ , then we have

uD(n)

l = D(n)

l+l′ (mod pn)
,

where 0 � l, l′ � pn − 1.

Proof. It is easy to get the desired result from the fact that

Q pn (uv) ≡ Q pn (u) + Q pn(v)
(

mod pn) (4)

for integers u, v with gcd(uv, p) = 1, see [1]. �
Lemma 2. (i) For n′ � n � 1 and 0 � l′ � pn′ − 1, we have{

u
(

mod pn+1): u ∈ D(n′)
l′

} = D(n)

l′ (mod pn)
.

(ii) For n � 1 and 0 � l � pn − 1, we have{
u (mod p): u ∈ D(n)

l

} = {1,2, . . . , p − 1}.

Proof. For all integers n � 1 by [1, Proposition 4.4 and
Corollary 4.4], Q pn (u) induces a group epimorphism

Q pn : Z∗
pn+1 → (Zpn ,+)

with kernel D(n)
0 of order p − 1. So each D(n)

l has p − 1
elements for 1 � l < pn .

(i) It is sufficient to show the case of n′ = n + 1, then
the claim follows by induction.

For any u ∈ D(n+1)

l′ , by [1, Proposition 4.1] we have

Q pn (u) ≡ Q pn+1(u) ≡ l′
(

mod pn),
which indicates that u (mod pn+1) ∈ D(n)

l′ (mod pn)
since

pn+1 is a period of Q pn (u). So we get{
u

(
mod pn+1): u ∈ D(n+1)

l′
} ⊆ D(n)

l′ (mod pn)
.

Then we show the cardinality of {u (modpn+1): u ∈
D(n+1)

l′ } is p − 1, equal to that of D(n)

l′ (mod pn)
. In fact, if

u ≡ u′ (mod pn+1) for u, u′ ∈ D(n+1)

l′ , we suppose u = u′ +
k0 pn+1 for some 0 � k0 < p. We have

l′ ≡ Q pn+1

(
u′) ≡ Q pn+1(u) ≡ Q pn+1

(
u′ + k0 pn+1)

≡ Q pn+1

(
u′) − k0u−1 pn (

mod pn+1),
which indicates that k0 = 0 and u = u′ . We prove the first
result.
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