ELSEVIER

### Contents lists available at SciVerse ScienceDirect

## Information Processing Letters



www.elsevier.com/locate/ipl

# Linear complexity of binary sequences derived from Euler quotients with prime-power modulus

Xiaoni Du<sup>a,b</sup>, Zhixiong Chen<sup>c,d,\*</sup>, Lei Hu<sup>d</sup>

<sup>a</sup> College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China

<sup>b</sup> State Key Lab. of Integrated Service Networks, Xidian University, Xi'an, Shaanxi 710071, PR China

<sup>c</sup> Department of Mathematics, Putian University, Putian, Fujian 351100, PR China

<sup>d</sup> State Key Laboratory of Information Security, Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China

#### ARTICLE INFO

Article history: Received 3 February 2012 Received in revised form 16 April 2012 Accepted 23 April 2012 Available online 15 May 2012 Communicated by D. Pointcheval

*Keywords:* Euler quotients Fermat quotients Pseudorandom binary sequences Linear complexity Cryptography

#### 1. Introduction

For an odd prime p, integers  $r \ge 1$  and u with gcd(u, p) = 1, the *Euler quotient*  $Q_{p^r}(u)$  *modulo*  $p^r$  is defined as the unique integer with

$$Q_{p^r}(u) \equiv \frac{u^{\varphi(p^r)} - 1}{p^r} \pmod{p^r},$$
  
$$0 \leq Q_{p^r}(u) \leq p^r - 1,$$

where  $\varphi(-)$  is the Euler totient function, and we also define

 $Q_{p^r}(kp) = 0, \quad k \in \mathbb{Z}.$ 

See, e.g., [1,5,14] for details.

0020-0190/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ipl.2012.04.011

ABSTRACT

We extend the definition of binary threshold sequences from Fermat quotients to Euler quotients modulo  $p^r$  with odd prime p and  $r \ge 1$ . Under the condition of  $2^{p-1} \ne 1$  (mod  $p^2$ ), we present exact values of the linear complexity by defining cyclotomic classes modulo  $p^n$  for all  $1 \le n \le r$ . The linear complexity is very close to the period and is of desired value for cryptographic purpose. We also present a lower bound on the linear complexity for the case of  $2^{p-1} \equiv 1 \pmod{p^2}$ .

© 2012 Elsevier B.V. All rights reserved.

If r = 1,  $Q_p(u)$  is just the *Fermat quotient* studied in [7, 9,13,15–18] and references therein. More recently, Fermat quotients are studied from the viewpoint of cryptography, see [2–4,6,8,13].

Motivated by the previous work [2–4], we define a family of binary sequences  $(e_u)$  by using the Euler quotient  $Q_{p^r}(u)$  by

$$e_{u} = \begin{cases} 0, & \text{if } 0 \leq Q_{p^{r}}(u)/p^{r} < \frac{1}{2}, \\ 1, & \text{if } \frac{1}{2} \leq Q_{p^{r}}(u)/p^{r} < 1. \end{cases}$$
(1)

We note that  $(e_u)$  is  $p^{r+1}$ -periodic since  $Q_{p^r}(u)$  is a  $p^{r+1}$ -periodic sequence modulo  $p^r$  by the fact

$$Q_{p^r}(u+kp^r) \equiv Q_{p^r}(u) - kp^{r-1}u^{-1} \pmod{p^r}$$
(2)

for any integer k and u with gcd(u, p) = 1. In fact, for such u, we have

$$Q_{p^r}(u+kp^r) \equiv \frac{(u+kp^r)^{\varphi(p^r)}-1}{p^r}$$

<sup>\*</sup> Corresponding author at: Department of Mathematics, Putian University, Putian, Fujian 351100, PR China.

E-mail addresses: ymLdxn@126.com (X. Du), ptczx@126.com (Z. Chen), hulei@gucas.ac.cn (L. Hu).

$$= \frac{u^{\varphi(p^{r})} - 1}{p^{r}} + k\varphi(p^{r})u^{\varphi(p^{r}) - 1} + kp^{r}\varphi(p^{r})(\varphi(p^{r}) - 1)u^{\varphi(p^{r}) - 2}/2 + \cdots + (kp^{r})^{\varphi(p^{r}) - 1} = \frac{u^{\varphi(p^{r})} - 1}{p^{r}} + k\varphi(p^{r})u^{\varphi(p^{r}) - 1} = Q_{p^{r}}(u) - kp^{r-1}u^{-1} \pmod{p^{r}}.$$

For r = 1, linear complexity of  $(e_u)$  defined in (1) was investigated in [2]. The linear complexity is considered as a primary quality measure for periodic sequences and plays an important role in applications of sequences in cryptography. A low linear complexity has turned out to be undesirable for cryptographical applications. We recall that the *linear complexity*  $L((s_u))$  of a *T*-periodic sequence  $(s_u)$ over the binary field  $\mathbb{F}_2$  is the least order *L* of a linear recurrence relation over  $\mathbb{F}_2$ 

$$s_{u+L} = c_{L-1}s_{u+L-1} + \dots + c_1s_{u+1} + c_0s_u$$
 for  $u \ge 0$ 

which is satisfied by  $(s_u)$  and where  $c_0 = 1, c_1, \ldots, c_{L-1} \in \mathbb{F}_2$ . The polynomial

$$M(x) = x^{L} + c_{L-1}x^{L-1} + \dots + c_{0} \in \mathbb{F}_{2}[x]$$

is called the minimal polynomial of  $(s_u)$ . The generating polynomial of  $(s_u)$  is defined by

$$s(x) = s_0 + s_1 x + s_2 x^2 + \dots + s_{T-1} x^{T-1} \in \mathbb{F}_2[x].$$

It is easy to see that

$$M(x) = (x^T - 1)/\operatorname{gcd}(x^T - 1, s(x)),$$

hence

$$L((s_u)) = T - \deg(\gcd(x^T - 1, s(x))),$$
(3)

which is the degree of the minimal polynomial, see [11,19] for a more detailed exposition.

We will extend the result of [2] to show the following theorem.

**Theorem 1.** Let  $(e_u)$  be the  $p^{r+1}$ -periodic binary sequence defined as in Eq. (1). If  $2^{p-1} \neq 1 \pmod{p^2}$ , then the linear complexity  $L((e_u))$  of  $(e_u)$  satisfies

$$L((e_u)) = \begin{cases} p^{r+1} - p, & \text{if } p \equiv 1 \pmod{4}, \\ p^{r+1} - p, & \text{if } p \equiv 3 \pmod{4} \text{ and } r \text{ is even}, \\ p^{r+1} - 1, & \text{if } p \equiv 3 \pmod{4} \text{ and } r \text{ is odd}. \end{cases}$$

#### 2. Auxiliary lemmas

In order to prove the theorem, we will define a partition of the residue class ring modulo  $p^{n+1}$  with respect to the Euler quotient  $Q_{p^n}(u)$  for  $1 \le n \le r$ . We denote by  $\mathbb{Z}_{p^n} = \{0, 1, \ldots, p^n - 1\}$  the residue class ring modulo  $p^n$ and by  $\mathbb{Z}_{p^n}^*$  the unit group of  $\mathbb{Z}_{p^n}$  for  $n \ge 1$ . Let

$$D_l^{(n)} = \{ u: 0 \le u \le p^{n+1} - 1, \ \gcd(u, p) = 1, \ Q_{p^n}(u) = l \}$$

for  $l = 0, 1, ..., p^n - 1$  and  $n \ge 1$ . Thus, one can define  $(e_u)$  equivalently by

$$e_{u} = \begin{cases} 0, & \text{if } u \in D_{0}^{(r)} \cup \dots \cup D_{(p^{r}-1)/2}^{(r)} \cup p\mathbb{Z}_{p^{r}}, \\ 1, & \text{if } u \in D_{(p^{r}+1)/2}^{(r)} \cup \dots \cup D_{p^{r}-1}^{(r)}, \\ 0 \leqslant u \leqslant p^{r+1} - 1, \end{cases}$$

where  $p\mathbb{Z}_{p^r} = \{pa \pmod{p^r}: a = 0, 1, \dots, p^r - 1\}.$ 

**Lemma 1.** For all  $n \ge 1$ , let  $uD_l^{(n)} = \{uv \pmod{p^{n+1}}: v \in D_l^{(n)}\}$ . If  $u \in D_{l'}^{(n)}$ , then we have

$$uD_l^{(n)} = D_{l+l' \pmod{p^n}}^{(n)},$$
  
where  $0 \leq l, l' \leq p^n - 1.$ 

Proof. It is easy to get the desired result from the fact that

$$Q_{p^n}(uv) \equiv Q_{p^n}(u) + Q_{p^n}(v) \pmod{p^n}$$
(4)

for integers u, v with gcd(uv, p) = 1, see [1].  $\Box$ 

**Lemma 2.** (i) For  $n' \ge n \ge 1$  and  $0 \le l' \le p^{n'} - 1$ , we have

$$\{ u \pmod{p^{n+1}}: u \in D_{l'}^{(n')} \} = D_{l' \pmod{p^n}}^{(n)}.$$
(ii) For  $n \ge 1$  and  $0 \le l \le p^n - 1$ , we have

 $\left\{ u \pmod{p}: u \in D_l^{(n)} \right\} = \{1, 2, \dots, p-1\}.$ 

**Proof.** For all integers  $n \ge 1$  by [1, Proposition 4.4 and Corollary 4.4],  $Q_{p^n}(u)$  induces a group epimorphism

$$\mathsf{Q}_{p^n}:\mathbb{Z}_{p^{n+1}}^*\to(\mathbb{Z}_{p^n},+)$$

with kernel  $D_0^{(n)}$  of order p - 1. So each  $D_l^{(n)}$  has p - 1 elements for  $1 \le l < p^n$ .

(i) It is sufficient to show the case of n' = n + 1, then the claim follows by induction.

For any  $u \in D_{l'}^{(n+1)}$ , by [1, Proposition 4.1] we have

$$Q_{p^n}(u) \equiv Q_{p^{n+1}}(u) \equiv l' \pmod{p^n},$$

which indicates that  $u \pmod{p^{n+1}} \in D_{l' \pmod{p^n}}^{(n)}$  since  $p^{n+1}$  is a period of  $Q_{p^n}(u)$ . So we get

$$\{u \pmod{p^{n+1}}: u \in D_{l'}^{(n+1)}\} \subseteq D_{l' \pmod{p^n}}^{(n)}.$$

Then we show the cardinality of  $\{u \pmod{p^{n+1}}: u \in D_{l'}^{(n+1)}\}$  is p-1, equal to that of  $D_{l'}^{(n)} \pmod{p^n}$ . In fact, if  $u \equiv u' \pmod{p^{n+1}}$  for  $u, u' \in D_{l'}^{(n+1)}$ , we suppose  $u = u' + k_0 p^{n+1}$  for some  $0 \leq k_0 < p$ . We have

$$\begin{split} l' &\equiv \mathbb{Q}_{p^{n+1}} \big( u' \big) \equiv \mathbb{Q}_{p^{n+1}} (u) \equiv \mathbb{Q}_{p^{n+1}} \big( u' + k_0 p^{n+1} \big) \\ &\equiv \mathbb{Q}_{p^{n+1}} \big( u' \big) - k_0 u^{-1} p^n \pmod{p^{n+1}}, \end{split}$$

which indicates that  $k_0 = 0$  and u = u'. We prove the first result.

Download English Version:

https://daneshyari.com/en/article/427729

Download Persian Version:

https://daneshyari.com/article/427729

Daneshyari.com