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We pose a new visualization challenge, asking Graph Drawing algorithms to cope with the
requirements of Streaming applications. In this model a source produces a graph one edge
at a time. When an edge is produced, it is immediately drawn and its placement cannot
be altered. The drawing has an image persistence, that controls the lifetime of edges. If
the persistence is k, an edge remains in the drawing for the time spent by the source to
generate k edges, and then it fades away. In this model we study the area requirement
of planar straight-line grid drawings of trees and we assess the output quality of the
presented algorithms by computing the competitive ratio with respect to the best known
offline algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following model. A source produces a
graph one edge at a time. When an edge is produced, it is
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immediately drawn (i.e., before the next edge is produced)
and its drawing cannot be altered. The drawing has an im-
age persistence, that controls the lifetime of edges. If the
persistence is k, an edge remains in the drawing for the
time spent by the source to generate k edges, and then it
fades away.

Studying this model, which we call streamed graph
drawing, is motivated by the challenge of offering visual-
ization facilities to streaming applications, where massive
amounts of data, too large even to be stored, are produced
and processed at a very high rate [2]. The data are avail-
able one element at a time and need to be processed
quickly and with limited resources. Examples of applica-
tion fields include computer network traffic analysis, log-
ging of security data, stock exchange quotes’ correlation,
etc.

For the user of the visualization facility it is natural
to associate any graphic change with a new datum com-
ing from the stream. Hence, moving pieces of the drawing
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would be potentially ambiguous. On the other hand, the
drawing should have a size as small as possible.

Although streamed graph drawing is related to incre-
mental and dynamic graph drawing, it is qualitatively
different from both. In incremental graph drawing the lay-
out is constructed step by step according to a precomputed
vertex ordering that ensures invariants regarding, e.g., its
shape [3,4]. In streamed graph drawing the order cannot
be chosen. Dynamic graph drawing [5–7] usually refers to
drawing sequences of graphs, where drawings of consec-
utive graphs should be similar. Insertions and/or deletions
of vertices/edges are allowed and the current graph must
be drawn without knowledge of future updates. However,
the current layout is only weakly constrained by previous
drawings. In streamed graph drawing modifications con-
cern only single edges and previous layout decisions may
not be altered.

While there is some work on computing properties of
streamed graphs (see, e.g., [8–10]), as far as we know this
is the first time that the problem of drawing the k most
recent edges of a stream has been addressed.

In this paper, we concentrate on trees and we make
some assumption on the ordering in which the edges of
the tree are visited. Namely, we consider the area require-
ment for planar straight-line grid drawings of trees, and
we assume that the edges are streamed corresponding to
an Eulerian tour of the tree. A typical real-world scenario
in which this kind of streamed trees occur is the live repre-
sentation of procedure call trees in dynamic program anal-
ysis. Each procedure may call other procedures and each
call suspends the calling procedure until the called pro-
cedure has terminated. Note that, even medium size pro-
grams may have billions of procedure calls during a single
run, which motivates the design of visualization tools for
trace exploration [11–14]. Also, drawing a graph in a small
area is a typical goal in graph visualization (see, e.g., [15]).

Since a streamed graph drawing algorithm is a special
case of an online algorithm, it is reasonable to assess its
output quality in terms of its competitive ratio with re-
spect to the best known offline algorithm.

This paper is organized as follows. In Section 2 we in-
troduce the concept of streamed graph drawing. Area re-
quirements for tree drawings are derived in Section 3, and
we conclude with directions for future work in Section 4.

2. Framework

Let G = (V , E) be a simple undirected graph. A straight-
line grid drawing Γ = Γ (G) is a geometric representation
of G such that each vertex is drawn as a distinct point of
an integer-coordinate grid, and each edge is drawn as a
straight-line segment between the points associated with
its end-vertices. A drawing is planar if no two edges cross.
Since we only consider planar straight-line grid drawings
we simply refer to them as drawings in the remainder.

Given a subset of edges E ′ ⊆ E , the edge-induced
(sub)graph G[E ′] contains exactly those vertices of V in-
cident with edges in E ′ , and the edges in E ′ . We study
the problem of drawing a (potentially infinite) graph G
described by a sequence of edges (e1, e2, e3, . . .), which
we call a stream of edges, where ei is known at time i.

Throughout this paper, let W k
i = {ei−k+1, . . . , ei} denote a

window of the stream of size k and let Ei = {e1, . . . , ei}
denote the prefix of the stream of length i. Observe that
Ei = W i

i .
Our goal is to design online drawing algorithms for

streamed graphs. An online drawing algorithm incremen-
tally constructs a drawing of the graph, by adding one edge
at a time according to the order in which they appear in
the stream. Once a vertex is placed, however, its placement
cannot be altered until the vertex is removed.

More formally, we address the following problem: Let
Γ0 be an initially empty drawing. At each time i � 1 and
for some fixed parameter k � 1, called persistence, deter-
mine a drawing Γi of Gi = G[W k

i ] by adding ei to Γi−1
and dropping (if i > k) ei−k from Γi .

We assume that our memory is bounded by O (k).
Since streamed graph drawing algorithms are special

online algorithms, an important assessment of quality is
their competitive ratio. For a given online drawing algo-
rithm A and some measure of quality, consider any stream
of edges S = (e1, e2, . . .). Denote by A(S) the quality of A
executed on S , and by Opt(S) the quality achievable by an
optimal offline algorithm, i.e. an algorithm that knows the
streaming order in advance. Where possible, we measure
the effectiveness of A by evaluating its competitive ratio:
R A = maxS

A(S)
Opt(S)

.

In the remainder of the paper we restrict our attention
to the case where G is a tree, the goal is to determine a
planar straight-line grid drawing, and the measure of qual-
ity is the area required by the drawing, i.e., the number
of grid points contained in the minimum bounding box for
the drawing. We recall that, static algorithms to draw an n-
vertex tree in Θ(n) area are known if the tree is a binary
tree [16] or if its vertex-degree is bounded by

√
n [17].

The best known area bound for general trees is O (n log n)

[18,19].

3. Drawing a streamed tree

We consider the following scenario, corresponding to
the intuitive notion of a user traversing an undirected tree:
the edges of the stream are given according to an Eulerian
tour of the tree where we suppose that the persistence k
is much smaller than the number of the edges of the tree
(the tree may be considered “infinite”). Each (undirected)
edge (u, v) is traversed exactly twice, once from u to v
and once from v to u: the direction in which the edge is
traversed for the first time is called the forward direction;
the other direction is called the backward direction.

This corresponds to a DFS traversal where backtracks
explicitly appear. Observe that window W k

i contains in
general both forward and backward edges and that G[W k

i ]
is always connected. Fig. 1 shows an example of an Eule-
rian tour where several windows of size 5 are highlighted:
window W1 contains two forward and three backward
edges; window W5 contains all backward edges (in the
figure, the DFS visit starts from the rightmost vertex of the
drawing and proceeds counter-clockwise).

In this scenario a vertex may be encountered several
times during the traversal. Consider edge ei = (u, v) and
assume that the Eulerian tour moves from u to v . We
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