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Inference on cyclic graphs is one of the most important problems in the applications
of graphical models. While exact inference is NP-hard on general cyclic graphs, it has
been found that exact inference can be achieved with a computational complexity as
low as O(Nm3) on the outer-planar graph, which is a special kind of cyclic graph. In
this paper, we introduce a new kind of cyclic graph, the generalized outer-planar (GOP)
graph, which is more general than the outer-planar graph and show that the exact
inference on the GOP graphs can be achieved in O(Nm3) by a recursive sum–product (RSP)
algorithm. RSP exploits the property of GOP graphs that the faces are reducible, and brings
a “face elimination” procedure to compute the marginals exactly. Furthermore, RSP can
be implemented on general cyclic graphs to obtain approximate marginals. Experimental
results show the effectiveness of approximate RSP on various graphical models.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphical models have been widely studied and used
as powerful tools in many fields for modeling uncertainty,
such as image processing [1], natural language process-
ing [2], computational biology [3], and statistical machine
learning [4]. Inference problems on graphical models, in-
cluding computing partition functions, marginal distribu-
tions and most probable configurations, play an important
role in many of these applications [5]. Exact inference on
general graphs is NP-hard, and therefore it is usually in-
feasible to achieve in practice. However, for some special
cyclic graphs, exact inference can be done with efficient
algorithms. The belief propagation algorithm (BP) is an ex-
act inference algorithm, with O(Nm2) complexity (N is
the number of variables, and m is the maximal number of
states of the variables), for tree-structured graphical mod-
els [6]. The junction tree algorithm is an exact inference
approach for graphs with cycles, with complexity exponen-
tial to the size of the maximal clique in the induced junc-
tion tree [4]. Its complexity is O(Nm3) for outer-planar
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graphs and may be higher for other cyclic graphs. There
are many approximate algorithms, such as the loopy belief
propagation algorithm, the generalized belief propagation
algorithm [7] and the junction graph method [8], which
can obtain approximate inference results with lower com-
plexity compared with that of exact inference.

In this paper, we introduce a new kind of cyclic graph,
the generalized outer-planar (GOP) graph, and develop an
exact inference algorithm for such graphs. GOP graphs are
more general than outer-planar graphs. The computational
complexity of off-the-shelf exact inference methods may
be more than O(Nm3) on GOP graphs. We propose a re-
cursive sum–product (RSP) algorithm for exact inferences
on GOP graphs, which can keep the lowest computational
complexity, i.e., O(Nm3). The property of a GOP graph is
that its variables can be eliminated by using two simple
operations. Making use of this property, RSP is developed
as a “face elimination” procedure, which eliminates the
faces of GOP graphs one after another recursively. More
specifically, the inference is obtained from each individual
face and later integrated by using the structural overlap
among different faces in RSP. RSP obtains exact inference
on GOP graphs with the complexity of O(Nm3), which is
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Fig. 1. Relations of different kinds of graphs and the computational com-
plexity on these graphs for exact inference.

lower than the complexities of other exact inference meth-
ods.

The relations of different kinds of graphs and the com-
putational complexity on these graphs for exact inference
are shown in Fig. 1. Specifically, RSP can obtain exact in-
ference on those GOP graphs, with a lower complexity.

The remainder of this paper is organized as follows.
The background and some notations are introduced in Sec-
tion 2. The sum–product procedure for one cycle is in-
troduced in Section 3. Generalized outer-planar graphs are
introduced in Section 4. The recursive sum–product algo-
rithm (RSP) on GOP graphs is developed in Section 5. In
Section 6, we develop an approximate version of RSP for
general cyclic graphs. In Section 7, experiments on a vari-
ety of graphs are conducted to show the effectiveness of
approximate RSP.

2. Preliminaries

In this section, we overview the concepts of outer-
planar graph and Markov random field that are important
for our algorithm development. We denote an undirected
graph by G = (V , E), where V = {1,2, . . . ,n} is the set of
nodes and E ⊂ V × V is the set of edges. When G is used
for probabilistic inference, each node in this graph repre-
sents a random variable.

2.1. Face and outer-planar graph

We first give the description of the face of a planar
graph. A planar graph G partitions the rest of the plane
into a number of connected open sets, which are called the
faces of G . Each planar graph has exactly one unbounded
face, called the outer face or external face [9]. In our pa-
per, “face” is used to denote the bounded face if there is
no confusion, and “face” also denotes the set of variables
on its boundary. Fig. 2 shows four faces f1, f2, f3, f4 and
an outer face f0 in a planar graph. The outer-planar graph
is defined as follows.

An outer-planar graph G is a planar graph, where
all nodes lie on the outer face [10]. The graph shown
in Fig. 5(a) is an outer-planar graph, while the graph in
Fig. 5(b) is not an outer-planar graph, since node 5 does
not lie on the outer face.

2.2. Graphical models

An undirected graphical model (also known as a Markov
random field (MRF)) is a set of random variables (as well

Fig. 2. A planar graph and its faces.

Fig. 3. Illustrations of parallel edges.

as a set of undirected links) that have a Markov property
described by the graph G . Let Xs be the random variable
related to node s ∈ V in graph G , and xs take values in the
discrete space Xs = {0,1, . . . ,ms − 1}. Let x = {xs | s ∈ V }
take values in the product space X N =X1 ×X2 ×· · ·×XN ,
where N = |V | is the number of nodes in G . x is called a
state of X, where X = {Xs | s ∈ V }. A clique of a graph G is
a subset of nodes in which there exists an edge between
each pair of nodes in the subset, and a clique potential is
a non-negative real valued function defined on the set of
nodes in a clique [5]. The pairwise MRF is an MRF where
all the cliques have at most two variables. The probability
distribution of a pairwise MRF G = (V , E) can be expressed
as a product of clique potentials:

p(x) = 1

Zψ

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt), (1)

where Zψ denotes the partition function, ψs(xs) and
ψst(xs, xt) denote the potentials corresponding to the
clique {xs} and {xs, xt}.

3. Sum–product on one cycle

If a graph contains only one face (not including the
outer face), there is just one cycle in the graph. When us-
ing the sum–product procedure for the graph with only
one cycle, we first reduce the cycle to parallel edges be-
tween two variables of this cycle, and then compute the
distribution of these two variables. If there are two or
more edges connecting the same two nodes, such edges
are called parallel edges. One example of parallel edges
is shown in Fig. 3, where there are three parallel edges
between nodes 1 and 2. The potential functions on paral-
lel edges can be reduced to one potential function on one
edge by the dot product:

ψst(xs, xt) =
∏

i∈PE(st)

ψ i
st(xs, xt), (2)
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