
Information Processing Letters 112 (2012) 376–379

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On-line scheduling of equal-length intervals on parallel machines

Stanley P.Y. Fung a, Chung Keung Poon b,∗, Duncan K.W. Yung b

a University of Leicester, Leicester, UK
b City University of Hong Kong, Hong Kong, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 September 2011
Received in revised form 2 January 2012
Accepted 31 January 2012
Available online 1 February 2012
Communicated by F.Y.L. Chin

Keywords:
Interval scheduling
Parallel scheduling
On-line algorithm
Competitive analysis

We consider the on-line preemptive scheduling of weighted equal-length intervals on
multiple machines to maximize the total weight of completed intervals. We design an
algorithm that is 2-competitive when the number of machines m is even; and (2 + 2

2m−1)-
competitive when m is an odd number at least 3. For example, when m = 3, it is 2.4-
competitive. As m increases, the competitive ratio approaches 2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We study the on-line preemptive scheduling of weight-
ed intervals on m identical machines. The input consists of
a set of intervals that arrive on-line and each machine is
capable of processing one interval at a time. Our goal is
to maximize the total weight of completed intervals. More
precisely, each interval I has an arrival time a(I), a deadline
d(I) and a weight w(I). To complete I , the interval must
be processed on a machine continuously from time a(I) to
d(I) without interruption. We consider the on-line model,
where the attributes of interval I are released at time a(I)
but not earlier. So, upon the arrival of I , the scheduler
has to decide (immediately and without knowledge of the
future) whether to start I and on which machine to pro-
cess it, preempting the current interval there if any. Note
that any interval that is not started immediately or is pre-
empted before its completion will be lost forever.

Such a problem is motivated by many applications such
as call control and bandwidth allocation (see [1,3,10]) in
which jobs have fixed starting and finishing times and
they arrive at their respective starting time, demanding

* Corresponding author.
E-mail address: csckpoon@cityu.edu.hk (C.K. Poon).

immediate processing. When the system is overloaded, the
scheduler has to decide whether to ignore a new job re-
quest or to preempt a currently running job in order to
start the new one.

We gauge the performance of an on-line algorithm by
its competitive ratio [9,2]. Given an input I (a set of inter-
vals) and an algorithm A, we denote by S A(I) and S∗(I)

the schedules produced by A and by an optimal offline al-
gorithm on I , respectively. Denote by |S| the total weight
of intervals processed completely in S . Then the competi-
tive ratio of algorithm A is defined as rA = supI

|S∗(I)|
|S A(I)| .

Interval scheduling can be viewed as a special case of
job scheduling in which the jobs always have tight dead-
lines, i.e., the processing time of a job is equal to the
difference between its deadline and arrival time. Thus we
define d(I) − a(I) as the processing time (or length) of I .
In this paper, we focus on equal-length intervals and as-
sume w.l.o.g. that all intervals have length 1. Hence we
have d(I) = a(I) + 1.

We first mentioned the known results for weighted
equal-length intervals. When there is only one machine
(m = 1), Woeginger [10] gave a deterministic 4-competitive
algorithm (for more general intervals actually) and a
matching lower bound. With randomization, the best up-
per and lower bounds are 2 (by Fung et al. [6]) and

0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2012.01.015

http://dx.doi.org/10.1016/j.ipl.2012.01.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:csckpoon@cityu.edu.hk
http://dx.doi.org/10.1016/j.ipl.2012.01.015

S.P.Y. Fung et al. / Information Processing Letters 112 (2012) 376–379 377

1 + ln(2) ≈ 1.693 (by Epstein and Levin [4]) respectively.
The 2-competitive algorithm is in fact a 2-barely random
algorithm, i.e., one that randomly chooses between two
deterministic algorithms at the very beginning and then
sticks with the chosen algorithm thereafter. Fung et al.
[6] gave a lower bound of 2 for the class of 2-barely
random algorithms. For m = 2, Fung et al. [7] presented
a 3.582-competitive deterministic algorithm and gave a
lower bound of 2. No results are known for m � 3.

For the on-line scheduling of unweighted variable-
length intervals, Faigle and Nawijn [5] gave an optimal
1-competitive deterministic algorithm for m identical ma-
chines while Krumke et al. [8] studied the scheduling on
related machines. These results are outside the scope of
this paper.

In this paper, we design an on-line algorithm for our
problem and prove that it is 2-competitive for all even m,
improving the previous 3.582 upper bound when m = 2
and generalizing it to larger m. The more interesting case
is when m is odd and we design a novel scheme for dis-
tributing the intervals more evenly (w.r.t. their weights)
among the machines. We show that our algorithm is (2 +

2
2m−1)-competitive for all odd m � 3. Thus, the competitive
ratio is 2.4 when m = 3 and gradually approaches 2 as the
number of machines m increases.

In the following section, we describe our algorithm for
even m. In Section 3, we discuss the case of odd m and
prove its competitive ratio. The paper is then concluded in
Section 4 with some open problems.

2. Even number of machines

We first consider the case of two machines. Denote by
A and B the two machines. We partition the time axis into
slots s1, s2, . . . of unit length and assign A and B to take
care of alternating slots as follows. For all odd slots si (i.e.,
i is odd), machine A will select the heaviest interval that
arrives within slot si as follows. A begins by starting the
first interval that arrives in si . When a new interval with
heavier weight arrives within si , A preempts its current
interval and starts the new one. Let Ii be the interval that
A is processing when the end of slot si is reached. Clearly,
Ii is the heaviest interval that arrives in slot si .

In the next slot si+1, A will run Ii to completion and
then wait till the end of si+1, ignoring any new interval
that arrives within si+1. At the same time, B will select the
heaviest interval, Ii+1, that arrives in si+1 using the same
“greedy” method as A used in slot si . In the next slot si+2,
B will complete Ii+1 while A will select the heaviest inter-
val that arrives in si+2, and so on. Since OPT can only serve
the top-2 heaviest intervals arriving in each slot while our
algorithm can serve at least the heaviest one, the compet-
itive ratio is clearly 2.

The above idea can be easily generalized to all even m.
Let m = 2q for some integer q � 1. We divide the machines
into two groups, A and B, each with q machines. In an odd
slot si , machines in A select intervals that arrive within
the slot using the same “greedy” method. That is, when-
ever a newly arrived interval has weight heavier than any
interval currently being processed by machines in A, the
new interval will preempt the lightest one. In the follow-

ing (even) slot si+1, machines in A complete their intervals
while those in B select intervals that arrive in si+1 greed-
ily. Clearly, the algorithm can always obtain the weight of
the top q heaviest intervals arriving in each slot while OPT
can obtain at most the top 2q heaviest ones. Hence we
have the following theorem:

Theorem 1. The on-line algorithm has competitive ratio 2 when
m is even.

3. Odd number of machines

We first consider three machines. If, say, we allocate
two machines for the odd slots and one machine for the
even slots, then one can prove that the algorithm is 3-
competitive using the same argument as in the previous
section. This bound is also tight. Consider an input in
which intervals only arrive in the even slots but not the
odd slots. Then essentially the algorithm has to handle
them with one machine while OPT can make use of all
three machines. To get a smaller competitive ratio, one
needs to have a way of sharing the 3 machines between
two slots more evenly.

3.1. The algorithm

Let the three machines be A, B and C . In slot s1, ma-
chine A and B will select intervals that arrive in the slot
greedily as follows. They begin by starting the first two
intervals that arrived in s1. Whenever a new interval I ar-
rives within slot s1 and is of heavier weight than either of
the two intervals currently being processed by A and B ,
the machine processing the lighter interval will preempt
its interval and start I . Thus, at any moment A and B will
be processing the top 2 heaviest intervals arriving in s1 so
far.

Let I1 and J1 be the intervals processed by A and B
respectively when slot s1 ends. Without loss of generality,
assume w(I1) � w(J1). In slot s2, machine A will com-
plete I1 and then wait until the end of s2. Machine B and
C will take care of new intervals that arrive in slot s2. The
key idea of the algorithm is that B will only abort J1 when
it can start an interval of large enough weight. In more
detail, the algorithm will go through one or more of the
following states:

State 1: (B has not completed J1 while C is processing an in-
terval of weight less than 2w(J1)) In this state, C
will select new intervals greedily. Note that at the
beginning of slot s2, C is idle and considered to be
processing an interval of weight 0. Hence the al-
gorithm is in State 1 initially. If C finally starts an
interval of weight at least 2w(J1), the algorithm
goes to State 2. Otherwise if B has completed J1,
the algorithm goes to State 3.

State 2: (B has not completed J1 while C is processing an in-
terval of weight at least 2w(J1)) In this state, B and
C will select new intervals with weight at least
2w(J1) greedily. That is, if the new interval I has
weight w(I) < 2w(J1), we will ignore I . Other-
wise, if w(I) is larger than any of the current

Download English Version:

https://daneshyari.com/en/article/427747

Download Persian Version:

https://daneshyari.com/article/427747

Daneshyari.com

https://daneshyari.com/en/article/427747
https://daneshyari.com/article/427747
https://daneshyari.com

