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A path in an edge-colored graph is called a rainbow path if the edges on it have distinct
colors. For k � 1, the rainbow-k-connectivity of a graph G , denoted by rck(G), is the
minimum number of colors required to color the edges of G in such a way that every
two distinct vertices are connected by at least k internally vertex-disjoint rainbow paths.
In this paper, we study rainbow-k-connectivity in the setting of random graphs. We show
that for every fixed integer d � 2 and every k � O (log n), p = (log n)1/d/n(d−1)/d is a
sharp threshold function for the property rck(G(n, p)) � d. This substantially generalizes
a result in [Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J.
Comb. 15 (2008)], stating that p = √

log n/n is a sharp threshold function for the property
rc1(G(n, p)) � 2. As a by-product, we obtain a polynomial-time algorithm that makes
G(n, p) rainbow-k-connected using at most one more than the optimal number of colors
with probability 1−o(1), for all k � O (logn) and p = n−ε(1±o(1)) for any constant ε ∈ [0,1).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple,
undirected and contain at least 2 vertices. We follow the
notation and terminology of [3]. The following notion of
rainbow-k-connectivity was proposed by Chartrand et al.
[8,9] as a strengthening of the canonical connectivity con-
cept in graphs. Given an edge-colored graph G , a path in
G is called a rainbow path if its edges have distinct col-
ors. For an integer k � 1, an edge-colored graph is called
rainbow-k-connected if any two different vertices of G are
connected by at least k internally vertex-disjoint rainbow
paths. The rainbow-k-connectivity of G , denoted by rck(G),
is the minimum number of colors required to color the
edges of G to make it rainbow-k-connected. Note that such
coloring does not exist if G is not k-vertex-connected, in
which case we simply let rck(G) = ∞. When k = 1 it is
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alternatively called rainbow-connectivity or rainbow connec-
tion number in literature, and is conventionally written as
rc(G) with the subscript k dropped.

Besides its theoretical interest as being a natural com-
binatorial concept, rainbow connectivity also finds appli-
cations in networking and secure message transmitting [6,
11,15]. The following motivation is given in [6]: Suppose
we want to route messages in a cellular network such that
each link on the route between two vertices is assigned
with a distinct channel. Then the minimum number of
used channels is exactly the rainbow-connectivity of the
underlying graph.

Some easy observations regarding rainbow-k-connec-
tivity include that rck(G) = 1 if and only if k = 1 and G
is a clique, that rc(G) � n − 1 for all connected G , and that
rc(G) = n−1 if and only if G is a tree, where n is the num-
ber of vertices in G . Chartrand et al. [8] determined the
rainbow-connectivity of several special classes of graphs,
including complete multipartite graphs. In [9] they investi-
gated rainbow-k-connectivity in complete graphs and regu-
lar complete bipartite graphs. The extremal graph-theoretic
aspect of rainbow-connectivity was studied by Caro et al.
[5], who proved that rc(G) = O δ(n log δ/δ) with δ being the
minimum degree of G . This tradeoff was later improved to
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rc(G) < 20n/δ by Krivelevich and Yuster [13], and was re-
cently shown to be rc(G) � 3n/(δ + 1) + 3 by Chandran
et al. [7] which is essentially tight. Chakraborty et al. [6]
studied the computational complexity perspective of this
notion, proving among other results that given a graph G
deciding whether rc(G) = 2 is NP-complete.

Another important setting that has been extensively ex-
plored for studying various graph concepts is the Erdős–
Rényi random graph model G(n, p) [10], in which each of
the

(n
2

)
pairs of vertices appears as an edge with proba-

bility p independently from other pairs. We say an event
E happens almost surely if the probability that it happens
approaches 1 as n → ∞, i.e., Pr[E] = 1 − on(1). We will al-
ways assume that n is the variable that tends to infinity,
and thus omit the subscript n from the asymptotic nota-
tions. For a graph property P , a function p(n) is called a
threshold function of P if:

• for every r(n) = ω(p(n)), G(n, r(n)) almost surely sat-
isfies P ; and

• for every r′(n) = o(p(n)), G(n, r′(n)) almost surely
does not satisfy P .

Furthermore, p(n) is called a sharp threshold function of P
if there exist two positive constants c and C such that:

• for every r(n) � C · p(n), G(n, r(n)) almost surely satis-
fies P ; and

• for every r′(n) � c · p(n), G(n, r′(n)) almost surely does
not satisfy P .

Clearly a sharp threshold function of a graph property is
also a threshold function of it; yet the converse may not
hold, e.g., the property of containing a triangle [2].

It is known that every non-trivial monotone graph
property possesses a threshold function [4,12]. Obviously
for every k,d, the property rck(G) � d is monotone, and
thus has a threshold. Caro et al. [5] proved that p =√

log n/n is a sharp threshold function for the property
rc1(G(n, p)) � 2. In this paper, we significantly extend their
result by establishing sharp thresholds for the property
rck(G(n, p)) � d for all constants d and logarithmically in-
creasing k. Our main theorem is as follows.

Theorem 1. Let d � 2 be a fixed integer and k = k(n) �
O (log n). Then p = (log n)1/d/n(d−1)/d is a sharp threshold
function for the property rck(G(n, p)) � d.

We also investigate rainbow-k-connectivity from the al-
gorithmic point of view. The NP-hardness of determining
rc(G) is shown by Chakraborty et al. [6]. We show that
the problem (even the search version) becomes easy in
random graphs, by designing an algorithm for coloring ran-
dom graphs to make it rainbow-k-connected with near-
optimal number of colors.

Theorem 2. For any constant ε ∈ [0,1), p = n−ε(1±o(1)) and
k � O (log n), there is a randomized polynomial-time algo-
rithm that, with probability 1 − o(1), makes G(n, p) rainbow-
k-connected using at most one more than the optimal number of

colors, where the probability is taken over both the randomness
of G(n, p) and that of the algorithm.

Our result is quite strong, since almost all natural edge
probability functions p encountered in various scenarios
satisfy p = n−ε(1±o(1)) for some ε > 0. Note that G(n,n−ε)

is almost surely disconnected when ε > 1 [10], which
makes the problem become trivial. We therefore ignore
these cases.

In Section 2 we present the proof of Theorem 1, and in
Section 3 we show the correctness of Theorem 2.

2. Threshold of rainbow-k-connectivity

This section is devoted to proving Theorem 1. Through-
out the paper “ln” denotes the natural logarithm, and “log”
denotes the logarithm to the base 2. Hereafter we assume
d � 2 is a fixed integer, c0 � 1 a positive constant, and
k = k(n) � c0 log n for all sufficiently large n. To establish
a sharp threshold function for a graph property the proof
should be two-fold. We first show the easy direction.

Theorem 3. rck(G(n, (ln n)1/d/n(d−1)/d)) � d+1 almost surely
holds.

We need the following fact proved by Bollobás [1].

Lemma 1. (See restatement of part of Theorem 6 in [1].) Let
c be a positive constant and d � 2 a fixed integer. Let p′ =
(ln(n2/c))1/d/n(d−1)/d. Then,

lim
n→∞ Pr

[
G
(
n, p′) has diameter at most d

] = e−c/2.

Proof of Theorem 3. Fix an arbitrary ε > 0 and choose a
constant c > 0 so that e−c/2 < ε/2. Let p′ = (ln(n2/c))1/d/

n(d−1)/d and p = (ln n)1/d/n(d−1)/d . Clearly p � p′ for all
n > c.

By Lemma 1 and the definition of limits, there exists an
N1 > 0 such that for all n > N1, Pr[G(n, p′) has diameter
at most d] < e−c/2 + ε/2 < ε, by our choice of c. Thus, for
every n > max{c, N1},

Pr
[
G(n, p) has diameter at most d

]
� Pr

[
G
(
n, p′) has diameter at most d

]
< ε.

Due to the arbitrariness of ε , this implies that the prob-
ability of G(n, p) having diameter at most d is o(1). This
completes the proof of Theorem 3, since the rainbow-k-
connectivity of a graph is at least as large as its diame-
ter. �

We are left with the other direction stated below. Fix
C = 220 · c0.

Theorem 4. rck(G(n, C(log n)1/d/n(d−1)/d)) � d almost surely
holds.

The key component of our proof of Theorem 4 is the
following theorem.
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