On rainbow- k-connectivity of random graphs ${ }^{\text {s }}$

Jing He, Hongyu Liang*
Institute for Interdisciplinary Information Sciences, FIT Building 4-609, Tsinghua University, Beijing 100084, China

A R T I C L E IN F O

Article history:

Received 23 December 2010
Received in revised form 11 January 2012
Accepted 31 January 2012
Available online 1 February 2012
Communicated by F.Y.L. Chin

Keywords:

Rainbow connectivity
Random graph
Graph algorithms
Sharp threshold function
Probabilistic method

Abstract

A path in an edge-colored graph is called a rainbow path if the edges on it have distinct colors. For $k \geqslant 1$, the rainbow- k-connectivity of a graph G, denoted by $r c_{k}(G)$, is the minimum number of colors required to color the edges of G in such a way that every two distinct vertices are connected by at least k internally vertex-disjoint rainbow paths. In this paper, we study rainbow- k-connectivity in the setting of random graphs. We show that for every fixed integer $d \geqslant 2$ and every $k \leqslant O(\log n), p=(\log n)^{1 / d} / n^{(d-1) / d}$ is a sharp threshold function for the property $r_{k}(G(n, p)) \leqslant d$. This substantially generalizes a result in [Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Comb. 15 (2008)], stating that $p=\sqrt{\log n / n}$ is a sharp threshold function for the property $r c_{1}(G(n, p)) \leqslant 2$. As a by-product, we obtain a polynomial-time algorithm that makes $G(n, p)$ rainbow-k-connected using at most one more than the optimal number of colors with probability $1-o(1)$, for all $k \leqslant O(\log n)$ and $p=n^{-\epsilon(1 \pm o(1))}$ for any constant $\epsilon \in[0,1)$. (C) 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple, undirected and contain at least 2 vertices. We follow the notation and terminology of [3]. The following notion of rainbow-k-connectivity was proposed by Chartrand et al. [8,9] as a strengthening of the canonical connectivity concept in graphs. Given an edge-colored graph G, a path in G is called a rainbow path if its edges have distinct colors. For an integer $k \geqslant 1$, an edge-colored graph is called rainbow- k-connected if any two different vertices of G are connected by at least k internally vertex-disjoint rainbow paths. The rainbow- k-connectivity of G, denoted by $r c_{k}(G)$, is the minimum number of colors required to color the edges of G to make it rainbow- k-connected. Note that such coloring does not exist if G is not k-vertex-connected, in which case we simply let $r c_{k}(G)=\infty$. When $k=1$ it is

[^0]alternatively called rainbow-connectivity or rainbow connection number in literature, and is conventionally written as $r c(G)$ with the subscript k dropped.

Besides its theoretical interest as being a natural combinatorial concept, rainbow connectivity also finds applications in networking and secure message transmitting [6, $11,15]$. The following motivation is given in [6]: Suppose we want to route messages in a cellular network such that each link on the route between two vertices is assigned with a distinct channel. Then the minimum number of used channels is exactly the rainbow-connectivity of the underlying graph.

Some easy observations regarding rainbow-k-connectivity include that $r c_{k}(G)=1$ if and only if $k=1$ and G is a clique, that $r c(G) \leqslant n-1$ for all connected G, and that $r c(G)=n-1$ if and only if G is a tree, where n is the number of vertices in G. Chartrand et al. [8] determined the rainbow-connectivity of several special classes of graphs, including complete multipartite graphs. In [9] they investigated rainbow-k-connectivity in complete graphs and regular complete bipartite graphs. The extremal graph-theoretic aspect of rainbow-connectivity was studied by Caro et al. [5], who proved that $r c(G)=O_{\delta}(n \log \delta / \delta)$ with δ being the minimum degree of G. This tradeoff was later improved to
$r c(G)<20 n / \delta$ by Krivelevich and Yuster [13], and was recently shown to be $r c(G) \leqslant 3 n /(\delta+1)+3$ by Chandran et al. [7] which is essentially tight. Chakraborty et al. [6] studied the computational complexity perspective of this notion, proving among other results that given a graph G deciding whether $r c(G)=2$ is NP-complete.

Another important setting that has been extensively explored for studying various graph concepts is the ErdősRényi random graph model $G(n, p)$ [10], in which each of the $\binom{n}{2}$ pairs of vertices appears as an edge with probability p independently from other pairs. We say an event \mathcal{E} happens almost surely if the probability that it happens approaches 1 as $n \rightarrow \infty$, i.e., $\operatorname{Pr}[\mathcal{E}]=1-o_{n}(1)$. We will always assume that n is the variable that tends to infinity, and thus omit the subscript n from the asymptotic notations. For a graph property P, a function $p(n)$ is called a threshold function of P if:

- for every $r(n)=\omega(p(n)), G(n, r(n))$ almost surely satisfies P; and
- for every $r^{\prime}(n)=o(p(n)), G\left(n, r^{\prime}(n)\right)$ almost surely does not satisfy P.

Furthermore, $p(n)$ is called a sharp threshold function of P if there exist two positive constants c and C such that:

- for every $r(n) \geqslant C \cdot p(n), G(n, r(n))$ almost surely satisfies P; and
- for every $r^{\prime}(n) \leqslant c \cdot p(n), G\left(n, r^{\prime}(n)\right)$ almost surely does not satisfy P.

Clearly a sharp threshold function of a graph property is also a threshold function of it; yet the converse may not hold, e.g., the property of containing a triangle [2].

It is known that every non-trivial monotone graph property possesses a threshold function [4,12]. Obviously for every k, d, the property $r c_{k}(G) \leqslant d$ is monotone, and thus has a threshold. Caro et al. [5] proved that $p=$ $\sqrt{\log n / n}$ is a sharp threshold function for the property $r c_{1}(G(n, p)) \leqslant 2$. In this paper, we significantly extend their result by establishing sharp thresholds for the property $r c_{k}(G(n, p)) \leqslant d$ for all constants d and logarithmically increasing k. Our main theorem is as follows.

Theorem 1. Let $d \geqslant 2$ be a fixed integer and $k=k(n) \leqslant$ $O(\log n)$. Then $p=(\log n)^{1 / d} / n^{(d-1) / d}$ is a sharp threshold function for the property $r_{k}(G(n, p)) \leqslant d$.

We also investigate rainbow- k-connectivity from the algorithmic point of view. The NP-hardness of determining $r c(G)$ is shown by Chakraborty et al. [6]. We show that the problem (even the search version) becomes easy in random graphs, by designing an algorithm for coloring random graphs to make it rainbow- k-connected with nearoptimal number of colors.

Theorem 2. For any constant $\epsilon \in[0,1), p=n^{-\epsilon(1 \pm o(1))}$ and $k \leqslant O(\log n)$, there is a randomized polynomial-time algorithm that, with probability $1-o(1)$, makes $G(n, p)$ rainbow-k-connected using at most one more than the optimal number of
colors, where the probability is taken over both the randomness of $G(n, p)$ and that of the algorithm.

Our result is quite strong, since almost all natural edge probability functions p encountered in various scenarios satisfy $p=n^{-\epsilon(1 \pm o(1))}$ for some $\epsilon>0$. Note that $G\left(n, n^{-\epsilon}\right)$ is almost surely disconnected when $\epsilon>1$ [10], which makes the problem become trivial. We therefore ignore these cases.

In Section 2 we present the proof of Theorem 1, and in Section 3 we show the correctness of Theorem 2.

2. Threshold of rainbow- k-connectivity

This section is devoted to proving Theorem 1. Throughout the paper "In" denotes the natural logarithm, and "log" denotes the logarithm to the base 2 . Hereafter we assume $d \geqslant 2$ is a fixed integer, $c_{0} \geqslant 1$ a positive constant, and $k=k(n) \leqslant c_{0} \log n$ for all sufficiently large n. To establish a sharp threshold function for a graph property the proof should be two-fold. We first show the easy direction.

Theorem 3. $r c_{k}\left(G\left(n,(\ln n)^{1 / d} / n^{(d-1) / d}\right)\right) \geqslant d+1$ almost surely holds.

We need the following fact proved by Bollobás [1].

Lemma 1. (See restatement of part of Theorem 6 in [1].) Let c be a positive constant and $d \geqslant 2$ a fixed integer. Let $p^{\prime}=$ $\left(\ln \left(n^{2} / c\right)\right)^{1 / d} / n^{(d-1) / d}$. Then,
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G\left(n, p^{\prime}\right)\right.$ has diameter at most $\left.d\right]=e^{-c / 2}$.
Proof of Theorem 3. Fix an arbitrary $\epsilon>0$ and choose a constant $c>0$ so that $e^{-c / 2}<\epsilon / 2$. Let $p^{\prime}=\left(\ln \left(n^{2} / c\right)\right)^{1 / d} /$ $n^{(d-1) / d}$ and $p=(\ln n)^{1 / d} / n^{(d-1) / d}$. Clearly $p \leqslant p^{\prime}$ for all $n>c$.

By Lemma 1 and the definition of limits, there exists an $N_{1}>0$ such that for all $n>N_{1}, \operatorname{Pr}\left[G\left(n, p^{\prime}\right)\right.$ has diameter at most $d]<e^{-c / 2}+\epsilon / 2<\epsilon$, by our choice of c. Thus, for every $n>\max \left\{c, N_{1}\right\}$,

$$
\begin{aligned}
& \operatorname{Pr}[G(n, p) \text { has diameter at most } d] \\
& \quad \leqslant \operatorname{Pr}\left[G\left(n, p^{\prime}\right) \text { has diameter at most } d\right]<\epsilon .
\end{aligned}
$$

Due to the arbitrariness of ϵ, this implies that the probability of $G(n, p)$ having diameter at most d is $o(1)$. This completes the proof of Theorem 3, since the rainbow- k connectivity of a graph is at least as large as its diameter.

We are left with the other direction stated below. Fix $C=2^{20} \cdot c_{0}$.

Theorem 4. $r c_{k}\left(G\left(n, C(\log n)^{1 / d} / n^{(d-1) / d}\right)\right) \leqslant d$ almost surely holds.

The key component of our proof of Theorem 4 is the following theorem.

https://daneshyari.com/en/article/427753

Download Persian Version:

https://daneshyari.com/article/427753

Daneshyari.com

[^0]: th This work was supported in part by the National Basic Research Program of China Grants 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China Grants 61033001, 61061130540, 61073174.

 * Corresponding author.

 E-mail addresses: he-j08@mails.tsinghua.edu.cn (J. He), lianghy08@mails.tsinghua.edu.cn (H. Liang).

