
Information Processing Letters 109 (2009) 790–794

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Distributed approximation for maximum weight matching on bounded
degree bounded integer weight graphs

Satyajit Banerjee ∗, Atish Datta Chowdhury, Subhas Kumar Ghosh

Honeywell Technology Solutions, 151/1, Doraisanipalya, Bannerghatta Road, Bangalore, India-560076

a r t i c l e i n f o

Article history:
Received 1 October 2008
Received in revised form 28 January 2009
Accepted 25 March 2009
Available online 27 March 2009
Communicated by K. Iwama

Keywords:
Graph algorithms
Distributed algorithms
Approximation algorithms
Maximum matching

1. Introduction

Consider an undirected graph G = (V , E, w) with ver-
tex set V and edge set E , where |V | = n and the edge
weights are given by a function w : E → R

+ . A matching
M in G is a subset of E such that no two edges in M
have common endpoints. A matching is maximal if it is not
properly contained in any other matching. The weight of a
matching M is defined as w(M) = ∑

e∈M w(e). The max-
imum weight matching (MWM) problem is then to find a
matching M∗ in G that maximizes w(M). A matching M is
a γ -approximation of M∗ if w(M) � γ w(M∗).

While there exist efficient algorithms to compute MWM
in the sequential model of computation, finding a match-
ing efficiently in the distributed model remains elu-
sive. On the negative side, Kuhn et al. [1] proved a
Ω(

√
log n/ log logn + log �/ log log �) lower bound on the

time complexity for (possibly randomized) distributed al-

* Corresponding author.
E-mail addresses: satyajit.banerjee@honeywell.com (S. Banerjee),

atish.chowdhury@honeywell.com (A.D. Chowdhury),
subhas.kumar@honeywell.com (S.K. Ghosh).

gorithms achieving a constant factor approximation for
maximum matching, even with unbounded message size.

While for general graphs distributed approximation al-
gorithms which achieve (1/2 − δ) factor approximation
have poly-logarithmic runtime [2], for some special classes
of graphs, constant factor approximation has been achieved
in constant or near-constant runtime. In [3] authors pre-
sented a randomized distributed 1/4-approximation algo-
rithm on weighted trees that runs in constant time. Hoep-
man et al. [4] presented a (1/2 − δ) factor randomized dis-
tributed approximation algorithm for weighted matching
in trees using constant time, and a deterministic algorithm
for weighted trees having O(log∗ n) runtime and (1/2 − δ)

approximation ratio. Algorithms presented in [4] can also
be used to compute maximum unweighted matching on
regular and almost regular graphs within a constant fac-
tor.

In this paper we show that for deterministic distributed
maximum weight matching algorithms on bounded de-
gree bounded integer weight graphs, it is possible to im-
prove upon the approximation factor to (2/3 − δ), for
some 0 < δ < 2/3, while reducing the round complexity
to O(log(1

δ
) + log∗ n).

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.03.022

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:satyajit.banerjee@honeywell.com
mailto:atish.chowdhury@honeywell.com
mailto:subhas.kumar@honeywell.com
http://dx.doi.org/10.1016/j.ipl.2009.03.022

S. Banerjee et al. / Information Processing Letters 109 (2009) 790–794 791

2. Preliminaries

We consider the classical synchronous distributed com-
putation under the congest model [5]. We model our com-
munication network as a bounded degree connected undi-
rected graph G = (V , E, w), where V (|V | = n) is the set
of computing nodes and E (|E| = m) is the set of commu-
nication links. We consider a restricted set of graphs such
that wmin, wmax ∈ Z + and w : E → {wmin, . . . , wmax}.

Given a matching M on G , a path or cycle is alter-
nating if it consists of edges taken from M and E \ M
alternately. An alternating path or cycle a is said to be
an augmentation if M ⊕ a is also a matching on G , where
X ⊕ Y = (X \ Y) ∪ (Y \ X). For a set of vertex-disjoint
augmentations A, we define M ⊕ A as the resultant set
obtained by repeatedly augmenting M with each augmen-
tation in A exactly once in any order. An augmentation
with at most l non-M edges is called an l-augmentation.
A 2-augmentation a with respect to a given matching M
is centered at some vertex v ∈ V , if the non-M edge(s) of
a is (are) either incident on v or M(v) where {v, M(v)} is
a matching edge in M . Note that, the center of a 2-aug-
mentation is not unique. We denote a positive gain 2-aug-
mentation a having v as one of its centers as av . Gain
of an augmentation a, with respect to a matching M , is
a measure of the amount by which the weight of M can
be increased when augmented with a and it is defined as
g(a) � w(a\ M)− w(a∩ M). The definition can be naturally
extended for the gain of a set of vertex-disjoint augmen-
tations A. An atom of an augmentation is defined to be
either a matched edge or an unmatched vertex. Thus a
2-augmentation can have at most 3 atoms. It is easy to see
that a pair of 2-augmentations are vertex-disjoint if and
only if they are atom-disjoint. Two augmentations a and
a′ are said to be intersecting if they share vertices; disjoint
otherwise. In sequel we use the following useful results:

Theorem 2.1. (See [6,7].) Let M∗ be a maximum weight match-
ing and M any matching in G.

(1) If M admits no l-augmentation of positive gain, then
w(M) � l

l+1 w(M∗).
(2) There always exists a collection A of pairwise disjoint

l-augmentations such that w(M ⊕ A) � w(M) + l+1
2l+1 ×

(l
l+1 w(M∗) − w(M)).

3. Algorithm

Our algorithm follows an approach similar to [7]. Start-
ing with a valid matching (in particular, ∅), it improves
upon its weight in phases. Let Mi denote the match-
ing at the end of a phase i. Let A be the set of all
positive-gain 2-augmentations, at the beginning of phase i,
with respect to the matching Mi−1. In phase i, the pro-
posed algorithm computes a matching Mi = Mi−1 ⊕ A′ s.t.
g(A′) � αg(A∗) for some constant fraction α, where A′ ,
A∗ ⊆ A both are sets of pairwise disjoint 2-augmentations
and A∗ is the one with maximum gain. Thus using The-
orem 2.1, we form the recurrence w(Mi) � w(Mi−1) +
α 3

5 (2
3 w(M∗) − w(Mi−1)) which can be solved to get

procedure Distributed_Matching (input: G = (V , E))
Step 1: Compute G5 � (V ′, E ′): V ′ = V , E ′ = {{u, v}: dG (u, v) � 5}

and compute χv (color of node v) by coloring G5.
Initialize LV v using information of 5 neighborhood of v;
for phase = 1, . . . ,Π do

Step 2: Compute Av from LV v ;
for block = 1, . . . , β do

for color = 1, . . . ,χ do
if (color = χv)

Step 3: If ∃av ∈ Av satisfying the augmenting criteria,
command av for execution to its 9-hop neighbors;

Step 4: Do not command till next phase;
for each command a received (including its own) do

Step 5: Discard a and all the a′ intersecting with a from Av .
Update LV v appropriately;

end procedure

Fig. 1. Synchronous (2
3 − δ)-approximation MWM algorithm for node v .

w(Mi) � 2
3 w(M∗)(1 − (5−3α

5)i), assuming w(M0) = 0. In
the rest of the document, we will use A, A′ and A∗ to de-
note 2-augmentation sets as described above – when the
phase in question is clear from the context.

The detailed description of the algorithm is provided in
Algorithm 1. First, we use a specific coloring scheme to
color the nodes of the input graph in O(log∗ n) rounds
using a constant number of colors, say χ (step 1). The
algorithm then runs for a constant Π number of phases,
where each phase runs over a constant β number of blocks
and each block, in turn, runs for χ color-rounds. Dur-
ing the algorithm, each node v continuously maintains
updated information about the current set of all 2-aug-
mentations centered on all nodes within its 5-hop neigh-
borhood, including itself. This is defined as the local-view
of v , denoted as LV v . Let dG(u, v) be the minimum num-
ber of hops between the vertices u and v in G . Then the
local-view of v is formally defined as the current set of
2-augmentations centered at nodes u: dG(v, u) � 5, i.e.
in the 5-hop neighborhood of v . At the beginning of a
phase, each node v identifies the set of all positive gain
2-augmentations centered at v , from its current local-view.
We define this set as Av (step 2). Clearly, A = ⋃

u∈V Au .
A node v withdraws from participating in a phase when
Av becomes null. In each color-round k, all nodes v with
color k, apply an augmentation a ∈ Av if a satisfies an aug-
menting criteria (vide Definition 4.1) (step 3). Whenever a
commanded augmentation a is received at node v (includ-
ing the one commanded by v), all other augmentations
a′ that are intersecting with a are immediately discarded
from Av (step 5). This changes the local-view at v which
is appropriately updated. In each color-round, the applied
augmentations are locally broadcast for 9 hops in order to
maintain consistency across the local-views of each node
(vide Observation 4.2) (step 3). Each phase therefore runs
for 9χβ rounds.

Our contribution lies in designing an augmenting crite-
ria s.t. each phase runs within constant rounds on bounded
weight bounded degree graphs, while ensuring that the set
of augmentations applied, A′ , satisfies g(A′) � αg(A∗), as
described above. We exploit (i) the bounded integer edge-
weights of the graph to arrive at a constant β and (ii) the
bounded degree of the input graph to color it with a con-
stant χ number of colors.

Download	English	Version:

https://daneshyari.com/en/article/427760

Download	Persian	Version:

https://daneshyari.com/article/427760

Daneshyari.com

https://daneshyari.com/en/article/427760
https://daneshyari.com/article/427760
https://daneshyari.com/

