Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Minterm-transitive functions with asymptotically smallest block sensitivity

Kazuyuki Amano*

Department of Computer Science, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan

ARTICLE INFO

Article history: Received 1 July 2011 Received in revised form 12 September 2011 Accepted 13 September 2011 Available online 17 September 2011 Communicated by J. Torán

Keywords: Computational complexity Boolean functions Block sensitivity Minterm-transitive functions Tight bounds

1. Introduction and results

For a Boolean function $f: \{0, 1\}^n \to \{0, 1\}$, the *block sensitivity* of f on input $x = (x_1, \ldots, x_n)$, denoted by bs(f, x), is the maximum number b such that there are pairwisedisjoint subsets B_1, \ldots, B_b of $\{1, 2, \ldots, n\}$ for which $f(x) \neq f(x^{B_i})$; here x^{B_i} denotes the input obtained from x by flipping all the bits x_j such that $j \in B_i$.

For $b \in \{0, 1\}$, define *b*-block sensitivity, of *f*, denoted by $bs_b(f)$, as $\max_{x \in f^{-1}(b)} bs(f, x)$. Define the block sensitivity of *f*, denoted by bs(f), as $bs(f) = \max(bs_0(f), bs_1(f))$.

The sensitivity of a Boolean function f is defined identically to bs(f), but with the further restriction that all blocks must be of size 1. The sensitivity was first introduced in [5], and the block sensitivity was introduced in [8]. Since then, these two measures as well as related measures on Boolean functions have been extensively studied over two decades. See e.g., [3,7] for a good survey and e.g., [1,2,10] for some recent results on this topic.

ABSTRACT

In this note, we give an explicit construction of a minterm-transitive Boolean function with block sensitivity $O(n^{3/7})$. This removes a log-factor from the previously known bounds by Xiaoming Sun [Block sensitivity of weakly symmetric functions, Theoret. Comput. Sci. 384 (1) (2007) 87–91] and by Andrew Drucker [Block sensitivity of minterm-transitive functions, Theoret. Comput. Sci. 412 (41) (2011) 5796–5801]. Due to the matching lower bound by Drucker, it is shown that the minimum achievable block sensitivity for non-constant minterm-transitive function is $\Theta(n^{3/7})$.

© 2011 Elsevier B.V. All rights reserved.

In this note, we focus on the block sensitivity of a special class of Boolean functions called *minterm-transitive* functions introduced by Chakraborty [4].

For convenience, in what follows, we index the coordinates of $x \in \{0, 1\}^n$ by $\mathbb{Z}_n = \{0, 1, ..., n - 1\}$. Define a *pattern* as a mapping $p : \mathbb{Z}_n \to \{0, 1, *\}$. For a pattern p, the *domain* of p is defined as $dom(p) = \{i \mid p(i) \in \{0, 1\}\}$, and the *width* of p is defined as i - j + 1 where i and j are the largest and smallest integer in dom(p). A pattern p naturally represents a partial assignment that contains all the variables in its domain.

Given a pattern p and a permutation σ on \mathbb{Z}_n , we say that an input $x = (x_0, \ldots, x_{n-1}) \in \{0, 1\}^n$ matches p under σ if $x_{\sigma(i)} = p(i)$ whenever $i \in \text{dom}(p)$. For $i \notin \text{dom}(p)$, the value of $x_{\sigma(i)}$ is arbitrary. For a pattern p and a set Γ of permutations on \mathbb{Z}_n , define the function $f^{\Gamma, p} : \{0, 1\}^n \to \{0, 1\}$ as

$$f^{\Gamma,p}(x) = 1 \iff \exists \sigma \in \Gamma$$

such that *x* matches *p* under σ .

A permutation group Γ is *transitive* if for all $i, j \in \mathbb{Z}_n$, there exists $\sigma \in \Gamma$ such that $\sigma(i) = j$. A Boolean function

^{*} Tel.: +81 277 30 1823, fax: +81 277 30 1802. *E-mail address:* amano@cs.gunma-u.ac.jp.

^{0020-0190/\$ –} see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2011.09.008

f is called *minterm-transitive* if $f = f^{\Gamma, p}$ for some transitive group Γ and pattern *p*.

A natural example of transitive group is a set of cyclic shifts of coordinates. Let \mathcal{T} be the set of cyclic shifts on \mathbb{Z}_n , i.e.,

$$\mathcal{T} = \left\{ \mathrm{sft}_j \colon \mathrm{sft}_j(i) = i + j \bmod n \right\}_{j \in \mathbb{Z}_n}.$$

A Boolean function f is called *minterm-cyclic* if $f = f^{\mathcal{T},p}$ for some pattern p. Obviously, every minterm-cyclic function is also minterm-transitive.

Sun [9] gave a construction of a minterm-transitive (in fact minterm-cyclic) function f on n variables with $bs(f) = O(n^{3/7} \ln n)$. Recently, Drucker [6] showed that this upper bound is almost tight by proving $\Omega(n^{3/7})$ lower bounds on the block sensitivity of every non-constant minterm-transitive function. In addition, he improved Sun's upper bound to $O(n^{3/7} \ln^{1/7} n)$, but left as an open problem whether we can remove the log-factor entirely.

In this note, we resolve this problem by giving an explicit construction of a minterm-cyclic function with block sensitivity $O(n^{3/7})$. Thus we show that the minimum achievable block sensitivity for non-constant minterm-transitive functions is $\Theta(n^{3/7})$.

2. Construction of functions with small bs(f)

In this section, we prove our main theorem:

Theorem 1. There is a minterm-cyclic Boolean function f such that $bs(f) = O(n^{3/7})$.

We follow the idea of Sun [9] and Drucker [6] to construct a function with small block sensitivity. However, unlike their constructions, we do not use a probabilistic argument.

We need some notations introduced in [6]. A set of four elements in \mathbb{Z}_n is called 4-*set*. For a 4-set $A = \{a_1, \ldots, a_4\}$ and a pattern p, we say that p contains a balanced shifted copy of A if (i) there exists a cyclic shift sft_j such that the domain of the shifted pattern dom(sft_j(p)) contains A, and (ii) sft_j(p) equals 0 on exactly two of four coordinates in Aand equals 1 on the other two. If p and A satisfy the condition (i) but not necessarily (ii), we simply say that p (or dom(p)) contains a shifted copy of A.

We use the following two lemmas shown by Sun [9] (see also [6]). These lemmas reduce the problem of finding a function with small block sensitivity to the problem of finding a pattern with small domain and some good covering property.

Lemma 1. (See [9].) For any $f = f^{T, p}$, $bs_1(f) \leq |dom(p)|$.

Lemma 2. (See [9].) Suppose that, for every set $S \subseteq \mathbb{Z}_n$ of size d, there is a 4-set $A \subseteq S$ for which p contains a balanced shifted copy of A. Then $bs_0(f) < d$ for $f = f^{\mathcal{T}, p}$.

The main contribution of this note is to give an explicit construction of a pattern satisfying the following lemma. We didn't make any effort to improve the constants (i.e., 2^{17} or 2^{19}) in the lemma.

Lemma 3. For every sufficiently large k, there is a pattern p with $dom(p) \subseteq \{0, 1, ..., 2^{19}k^4 - 1\}$ such that

- (i) p contains a shifted balanced copy of every 4-set in $\{0, 1, \ldots, k^4 1\}$, and
- (ii) $|\text{dom}(p)| \leq 2^{17}k^3$.

Before proving Lemma 3, we give the proof of Theorem 1.

Proof of Theorem 1. Let $k = n^{1/7}$. Fix a pattern p as in Lemma 3. We show that the minterm-cyclic function $f^{\mathcal{T},p}$ has block sensitivity $O(n^{3/7})$.

By Lemma 1, we have $bs_1(f^{T,p}) = |dom(p)| = O(n^{3/7})$.

Let $S \subseteq \mathbb{Z}_n$ be any set of size at least $4n^{3/7}$. Then there exists an interval $[a, a + n^{4/7} - 1] \pmod{n}$ that contains at least four elements of *S*. Let *A* be these elements. Then, by Lemma 3, *p* contains a shifted balanced copy of *A* since all elements of *A* lies in an interval of length $n^{4/7} = k^4$. Therefore, by Lemma 2, we have $bs_0(f^{\mathcal{T},p}) = O(n^{3/7})$ and hence $bs(f^{\mathcal{T},p}) = O(n^{3/7})$.

Proof of Lemma 3. We will construct a pattern p satisfying (i) and (ii) in the lemma. Our pattern p is a "concatenation" of five subpatterns p_1, \ldots, p_5 . We design p_1 so that it contains a balanced shifted copy of *large fraction* of 4-sets in $\{0, \ldots, k^4 - 1\}$, and then add p_2 to p_5 to cover the remaining sets. Since $|\text{dom}(p)| = \sum_{i=1}^{5} |\text{dom}(p_i)|$, it should satisfy $|\text{dom}(p_i)| = O(k^3)$ for $i = 1, \ldots, 5$. Similarly, the width of each subpattern should be $O(k^4)$.

Construction of p_1 . Following Sun [9], we represent numbers under base-k and use $[d_3, d_2, d_1, d_0]_k$ to denote the number $d_3k^3 + d_2k^2 + d_1k + d_0$. Let

$$S_{1} = \{ [0, s_{2}, s_{1}, s_{0}]_{k} \mid s_{2}, s_{1}, s_{0} = 0, 1, \dots, k \},$$

$$S_{2} = \{ [s_{3}, 0/1, s_{1}, s_{0}]_{k} \mid s_{1}, s_{0} = 0, 1, \dots, k-1,$$

$$s_{3} = 0, 1, \dots, k+1 \},$$

$$S_{3} = \{ [s_{3}, s_{2}, 0/1, s_{0}]_{k} \mid s_{2}, s_{0} = 0, 1, \dots, k-1,$$

$$s_{3} = 0, 1, \dots, k+1 \},$$

$$S_{4} = \{ [s_{3}, s_{2}, s_{1}, 0]_{k} \mid s_{2}, s_{1} = 0, 1, \dots, k-1,$$

$$s_{3} = 0, 1, \dots, k+1 \},$$

and $\tilde{S} = S_1 \cup S_2 \cup S_3 \cup S_4$. The second digit of S_2 and the third digit of S_3 are 0 or 1. The value 1 will be used to handle the carry in the addition. Note that, for a technical reason, s_2 , s_1 , s_0 can take the value k only in the definition of S_1 . An equivalent definition is

$$S_1 = \{ [0, s_2, s_1, s_0]_k \mid s_2, s_1, s_0 = 0, 1, \dots, k-1 \}$$
$$\cup \{ [1, 0, s_1, s_0]_k, [1, 1, 0, s_0]_k, [1, 1, 1, 0]_k \mid s_1, s_0 = 0, 1, \dots, k-1 \}.$$

Note also that the largest number in \tilde{S} is $(k+2)k^3 - 1 < 2k^4$.

Fix any $A = \{a_1, a_2, a_3, a_4\} \subseteq \{0, 1, \dots, k^4 - 1\}$ where $a_1 < a_2 < a_3 < a_4$. Set $\alpha = a_2 - a_1$, $\beta = a_3 - a_1$ and $\gamma =$

Download English Version:

https://daneshyari.com/en/article/427815

Download Persian Version:

https://daneshyari.com/article/427815

Daneshyari.com