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We consider the relationship between size and depth for layered Boolean circuits and
synchronous circuits. We show that every layered Boolean circuit of size s can be simulated
by a layered Boolean circuit of depth O (

√
s log s ). For synchronous circuits of size s, we

obtain simulations of depth O (
√

s ). The best known result so far was by Paterson and
Valiant (1976) [17], and Dymond and Tompa (1985) [6], which holds for general Boolean
circuits and states that D( f ) = O (C( f )/ log C( f )), where C( f ) and D( f ) are the minimum
size and depth, respectively, of Boolean circuits computing f . The proof of our main result
uses an adaptive strategy based on the two-person pebble game introduced by Dymond
and Tompa (1985) [6]. Improving any of our results by polylog factors would immediately
improve the bounds for general circuits.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the relationship between the
size and depth of fan-in 2 Boolean circuits over the basis
{∨,∧,¬}. Given a Boolean circuit C , the size of C is the
number of gates in C , and the depth of C is the length of
the longest path from any input to the output. We will use
the following notation for complexity classes. DTIME(t(n))

and SPACE(s(n)) are the classes of languages decidable by
deterministic multi-tape Turing machines in time O (t(n))

and space O (s(n)), respectively. Given a Boolean function
f : {0,1}n → {0,1}, define C( f ) to be the smallest size of
any circuit over {∨,∧,¬} computing f , and define D( f )
to be the smallest depth of any circuit over {∨,∧,¬} com-
puting f . Note that C( f ) and D( f ) are not necessarily
achieved by the same circuit.

Pippenger and Fischer [18] showed that for t(n) � n,
DTIME(t(n)) can be simulated by logspace uniform fami-
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lies of circuits of size O (t(n) log t(n)). Borodin [4] showed
that for s(n) � logn, languages computed by logspace uni-
form families of circuits of depth s(n) are contained in
SPACE(s(n)), and SPACE(s(n)) can be simulated by logspace
uniform families of circuits of depth O (s2(n)). Further-
more, circuit depth is related to parallel computation time
[22]. These results show that the study of circuit size ver-
sus depth helps to investigate the relationship between
sequential and parallel computation time, as well as time
versus space in sequential computation. However, very lit-
tle is known about the size versus depth question for gen-
eral Boolean circuits. The best known result so far is the
following theorem, which was first proved by Paterson and
Valiant [17], and later proved by Dymond and Tompa [6]
using another method.

Theorem A. (See [17,6].) Given a Boolean function f : {0,1}n →
{0,1}, we have D( f ) = O (C( f )/ log C( f )).

On the other hand, it can be easily shown that D( f ) =
Ω(log C( f )). Theorem A leaves a huge gap (log C( f ) versus
C( f )/ log C( f )) for circuits of any size. McColl and Paterson
[14] showed that every Boolean function depending on n
variables has circuit depth at most n + 1. There is an even
stronger result by Gaskov [8] showing that circuit depth is
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at most n − log log n + 2 + o(1). This gives a much stronger
bound on depth than Theorem A for functions that require
circuits of large size. In particular, for f : {0,1}n → {0,1}
such that C( f ) is exponential in n, [14] and [8] give essen-
tially tight bounds on depth. However, for functions that
can be computed by subexponential-size circuits, there is
still a large gap. Note that Theorem A gives a stronger
result than [14] and [8] only when C( f ) = o(n log n). Im-
proving Theorem A would yield improvements over [14]
and [8] for larger C( f ) as well.

Because of the connections mentioned above, there are
other important consequences if Theorem A can be im-
proved. Hopcroft, Paul, and Valiant [11] proved the follow-
ing analogous theorem about sequential time and space,
and Adleman and Loui [1] later gave an alternative proof.

Theorem B. (See [11,1].) DTIME(t(n)) ⊆ SPACE(t(n)/ log t(n)).

By the results of [18] and [4] mentioned above, improv-
ing Theorem A by at least a polylog factor in a uniform
setting immediately improves Theorem B.

For general Boolean circuits, the simulating depth
O (t(n)/ log t(n)) in Theorem A is very close to the cir-
cuit size. On the other extreme, consider tree-like circuits,
where every gate has fan-out at most 1. Spira [21] showed
that given any tree-like Boolean circuit C of size t(n), we
can always simulate C by another tree-like Boolean circuit
of depth O (log t(n)). Note that tree-like circuits are com-
monly referred to as formulas in circuit complexity. We will
use the term tree-like circuits to avoid any ambiguity. It is
unlikely that Spira’s result holds for general Boolean cir-
cuits, since that would imply P = NC1. Still, it is possible
that Theorem A can be improved. We indeed achieve im-
proved simulations for special classes of Boolean circuits.

1.1. Our results

We consider the size versus depth problem for special
classes of Boolean circuits. As far as we know, previously
no better bounds were known for these classes than what
follows from the bounds for general circuits [17,6]. We ob-
tain significant improvements over these general bounds
for layered circuits, synchronous circuits, and planar cir-
cuits as well as classes of circuits with small separators.
Informally, a circuit is layered if its set of gates can be
partitioned into subsets called layers, such that every wire
in the circuit is between adjacent layers. A circuit is syn-
chronous if for any gate g , every path from the inputs to
g has the same length. Synchronous and planar circuits
have been extensively studied before. Synchronous circuits
were introduced by Harper [10]. Planar circuits were in-
troduced by Lipton and Tarjan [13]. Layered circuits are a
natural generalization of synchronous circuits, but as far
as we know they have not been explicitly studied. Lay-
ered graphs have been studied by Paul, Tarjan, and Celoni
[15] (they call these “level graphs” in their paper). Belaga
[3] defined locally synchronous circuits, which is a sub-
class of layered circuits, with the extra condition that each
input variable can appear at most once. The synchronous
circuits form a proper subset of layered circuits. (See next
section for more details.) Furthermore, Turán [23] showed

that there exists a function fn such that any synchronous
circuit for fn has size Ω(n log n), but there exists a lay-
ered circuit for fn with size O (n). See Belaga [3] for the
same gap for functions with multiple outputs. This dis-
tinguishes synchronous circuits and layered circuits with
respect to their computational powers. Notice that every
Boolean function can be computed by circuits from each
of the classes we consider.

Our main result is for layered circuits.

Theorem 1. Every layered Boolean circuit of size s can be sim-
ulated by a layered Boolean circuit of depth O (

√
s log s ) com-

puting the same function.

We can obtain slightly better bounds for synchronous
circuits.

Theorem 2. Every synchronous Boolean circuit of size s can be
simulated by a synchronous Boolean circuit of depth O (

√
s )

computing the same function.

A circuit is planar if its underlying graph can be em-
bedded in the plane without crossings of the wires [13]. In
[7] we showed that planar circuits of size s can be simu-
lated by planar circuits of depth O (

√
s ). For planar circuits,

we used the fact that every planar circuit of size s has
a separator of size O (

√
s ) [12]. Informally, the separator

of a graph is a subset of the nodes whose removal yields
two subgraphs of comparable sizes. This allowed us to use
a simple divide-and-conquer strategy. Graphs with small
separators include trees, planar graphs [12], graphs with
bounded genus [9], and graphs with excluded minors [2].
In fact, we can get similar results for arbitrary classes of
circuits with small separators.

On the other hand, not all synchronous circuits and
layered circuits have small separators. See [20] for many
examples. So we need strategies other than the divide-and-
conquer approach. Our idea is to consider cuts, which sep-
arate the graph into two subgraphs that are not necessarily
comparable in size. For synchronous circuits, our technique
is to find a relatively small cut such that the function can
be computed by the composition of two circuits of small
depths. This gives a simple proof for synchronous circuits,
but the same method cannot be applied to the more gen-
eral layered circuits. For layered circuits, we develop an
adaptive strategy in the two-person pebble game, such that
the sizes of the cuts are taken into account during the
game. Note that both [17] and [6] use the notion of sepa-
rators in their proofs. Our results for synchronous circuits
and layered circuits show that the minimum circuit depth
does not necessarily grow with the separator size of the
minimum-size circuit.

Finally we note that an arbitrary circuit of size s can
be converted to either a planar or a synchronous circuit of
size O (s2) [24]. Thus improving our results by polylog fac-
tors for any of the classes we considered would also yield
improvements over the best known bounds for general cir-
cuits.
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