Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Acyclic chromatic index of planar graphs with triangles

Jianfeng Hou^a, Nicolas Roussel^{b,c,*}, Jianliang Wu^d

^a Center for Discrete Mathematics, Fuzhou University, Fujian, China

^b National Taiwan University, Department of Mathematics, Taipei, Taiwan

^c National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan

^d School of Mathematics, Shandong University, Jinan, China

ARTICLE INFO

Article history: Received 22 February 2011 Received in revised form 27 May 2011 Accepted 30 May 2011 Available online 1 June 2011 Communicated by J. Torán

Keywords: Graph algorithms Acyclic edge coloring Planar graph Distance between triangles

1. Introduction

In this paper, all graphs considered are finite, simple and undirected. We use V(G), E(G), $\delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively. For a vertex $v \in V(G)$, let N(v) denote the set of vertices adjacent to v and $d_G(v) = |N(v)|$ (or d(v) for simple) denote the *degree* of v. A d-, d^+ - or d^- -vertex is a vertex of degree d, at least d or at most d, respectively. The *length* or *degree* of a face f, denoted by d(f), is the length of a boundary walk around f. In particular, a cut-edge is counted twice. A d-, d^+ - or d^- -face or cycle is a face or cycle of length d, at least d or at most d, respectively. As usual [k] stands for the set $\{1, \ldots, k\}$.

A proper edge k-coloring of a graph *G* is a mapping ϕ from *E*(*G*) to the color set [*k*] such that no pair of incident edges are colored with the same color. A proper edge coloring of a graph *G* is called *acyclic* if there is no

ABSTRACT

A proper edge coloring of a graph *G* is called acyclic if there is no 2-colored cycle in *G*. The acyclic chromatic index of *G*, denoted by $\chi'_a(G)$, is the least number of colors in an acyclic edge coloring of *G*. Let *G* be a planar graph with maximum degree $\Delta(G)$. In this paper, we show that $\chi'_a(G) \leq \Delta(G) + 4$, if *G* contains no 4-cycle; $\chi'_a(G) \leq \Delta(G) + 5$, if *G* contains no intersecting triangles; and $\chi'_a(G) \leq \Delta(G) + 6$ if *G* contains no adjacent triangles.

© 2011 Elsevier B.V. All rights reserved.

2-colored cycle in *G*. In other words, the union of any two color classes induces a subgraph of *G* which is a forest. The *acyclic chromatic index* of *G*, denoted by $\chi'_a(G)$, is the least number of colors in an acyclic edge coloring of *G*.

Acyclic edge coloring has been widely studied over the past twenty years. The first general linear upper bound on $\chi'_a(G)$ was found by Alon et al. [1] who proved that $\chi'_a(G) \leq 64\Delta(G)$. This bound was improved to $16\Delta(G)$ by Molloy and Reed [15].

In 2001, Alon, Sudakov and Zaks [2] stated the Acyclic Edge Coloring Conjecture, which says that $\chi'_a(G) \leq \Delta(G) + 2$ for every graph *G*. This conjecture was verified for some special classes of graphs, including non-regular graphs with maximum degree at most four [5], subcubic graphs [4,18], outerplanar graphs [13,17], series-parallel graphs [12], grid like graphs [16], graphs with large girth [2], and so on.

Fiedorowicz et al. [10] gave an upper bound of $2\Delta(G) + 29$ for planar graphs and of $\Delta(G) + 6$ for triangle-free planar graphs. Independently, Hou et al. [12] proved that $\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + 22\}$ for planar graphs and $\chi'_a(G) \leq \Delta(G) + 2$ for planar graphs with girth at least 5, where the girth of a graph is the length of a shortest cycle in it. For planar graphs with girth at least 5 and

^{*} Corresponding author at: National Taiwan University, Department of Mathematics, Taipei, Taiwan.

E-mail addresses: jfhou@fzu.edu.cn (J. Hou), nrous.taipei@gmail.com (N. Roussel), jlwu@sdu.edu.cn (J. Wu).

^{0020-0190/\$ –} see front matter $\ \textcircled{0}$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2011.05.023

with maximum degree at least 10, $\chi'_a(G) = \Delta(G)$ [11,14]. For triangle-free planar graphs, Basavaraju and Chandran [6] proved that $\chi'_a(G) \leq \Delta(G) + 3$.

Borowiecki and Fiedorowicz [7] showed that $\chi'_{a}(G) \leq \Delta(G) + 15$ for planar graphs without cycles of length 4. The first result of this paper improves the bound to $\Delta(G) + 4$.

Theorem 1. Let *G* be a planar graph without 4-cycles. Then $\chi'_a(G) \leq \Delta(G) + 4$.

The following two results are for planar graphs without close triangles. Two triangles are *intersecting* if they have at least one vertex in common. Two triangles are *adjacent* if they have at least one edge in common.

Theorem 2. Let *G* be a planar graph without intersecting triangles. Then $\chi'_a(G) \leq \Delta(G) + 5$.

Theorem 3. Let *G* be a planar graph without adjacent triangles. Then $\chi'_a(G) \leq \Delta(G) + 6$.

2. Critical graphs

Let $\phi : E(G) \to [k]$ be an edge *k*-coloring of *G*. For a vertex $v \in V(G)$ and an edge *e* incident with *v*, we say that the color $\phi(e)$ appears on *v*. Let $C_{\phi}(v) = \{\phi(uv) \mid u \in N(v)\}$ and $S_{\phi}(v) = [k] - C_{\phi}(v)$. An (α, β) -path is a path consisting of edges that are colored α and β alternately. A graph *G* is called an *acyclically edge k-critical graph* if $\chi'_{a}(G) > k$ and every proper subgraph of *G* is acyclically edge *k*-colorable. In particular, such a graph has maximum degree at most *k*.

Lemma 1. If *G* is an acyclically edge *k*-critical graph, then *G* is 2-connected.

Proof. By contradiction, let v be a cut vertex of G and let C_1, \ldots, C_t ($t \ge 2$) be the connected components of G - v. By the choice of G, for each $1 \le i \le t$, there is an acyclic edge coloring ϕ_i of $G_i = C_i \cup \{v\}$ with k colors. We can permute the colors in each ϕ_i (if needed) such that the colors appearing on the edges incident with v are all different. Now the union of these colorings will be an acyclic edge coloring of G. \Box

Lemma 2. Let G be an acyclically edge k-critical graph and v be a d-vertex of G with neighbors x_1, \ldots, x_d , then $\sum_{i=1}^d d(x_i) \ge k+d$.

Proof. Suppose to the contrary that $\sum_{i=1}^{d} d(x_i) \leq k+d-1$. Then the graph G' = G - v admits an acyclic edge *k*-coloring ϕ by the choice of *G*. Assume $d(x_1) \geq \cdots \geq d(x_d) \geq 2$ by Lemma 1 and $A_i = \bigcup_{j=i}^{d} C_{\phi}(x_j)$ for $i \in \{1, \dots, d\}$. Then

$$|A_i| \leq \sum_{j=i}^d (d(x_j) - 1) = \sum_{j=1}^d (d(x_j) - 1) - \sum_{j=1}^{i-1} (d(x_j) - 1)$$
$$\leq \sum_{i=1}^d (d(x_j) - 1) - (i - 1) \leq k - i$$

for $i \in \{2, ..., d\}$. We can choose a color $\alpha_1 \notin A_1$ to color vx_1 and a color $\alpha_i \notin A_i$ and different from $\alpha_1, ..., \alpha_{i-1}$ to color vx_i for $i \in \{2, ..., d\}$. This produces a proper edge coloring of *G*. Now we show that there is no 2-colored cycle. Cycles that do not contain v have edges of at least three colors as the edge coloring of *G'* was acyclic. Now a cycle containing v must contain the edges vx_i , vx_j , say i < j and an edge $x_j w$ with $w \in N(x_j)$. By construction, the colors on $vx_i, vx_j, x_j w$ are distinct. Thus the resulting coloring is an acyclic edge k-coloring of *G*, which is a contradiction. \Box

Corollary 4. Let *G* be an acyclically edge *k*-critical graph. If $k \ge 2\Delta(G) - 1$, then *G* has no 2-vertices. If $k \le 2\Delta(G) - 2$, then the neighbors of every 2-vertex of *G* have degree at least $k - \Delta(G) + 2$.

Lemma 3. Let *G* be an acyclically edge *k*-critical graph with $k \leq 2\Delta(G) - 2$ and *v* be a vertex of *G* adjacent to a 2-vertex *w*. Then *v* is adjacent to at least $k - \Delta(G) + 1$ vertices of degree at least $k - \Delta(G) + 2$.

Proof. Suppose to the contrary that v is adjacent to at most $k - \Delta(G)$ vertices of degrees at least $k - \Delta(G) + 2$. By the choice of G, G - w admits an acyclic edge k-coloring ϕ . Let u be the other neighbor of w. Then $|S_{\phi}(u)| = k - (d(u) - 1) \ge k - \Delta(G) + 1$. Note that every color in $S_{\phi}(u)$ must appear on the vertex v, since otherwise, we can color uw with a color $\alpha \in S_{\phi}(u) - C_{\phi}(v)$ and choose a color β different from α and not appearing on v to color wv. Since v is adjacent to at most $k - \Delta(G)$ vertices of degrees at least $k - \Delta(G) + 2$, there exists a $(k - \Delta(G) + 1)^{-1}$ -vertex in N(v), say x, such that $\phi(vx) \in S_{\phi}(u)$. Then we color wu with $\phi(vx)$ and color vw with a color neither in $C_{\phi}(v)$ nor in $C_{\phi}(x)$, this is possible since $|C_{\phi}(v) \cup C_{\phi}(x)| \le d(v) - 2 + d(x) \le k - 1$. \Box

Lemma 4. Let *G* be an acyclically edge *k*-critical graph with $k \ge \Delta(G) + 2$ and *v* be a 3-vertex of *G*. Then the neighbors of *v* have degree at least $k - \Delta(G) + 2$.

Proof. Suppose to the contrary that v is adjacent to a $(k - \Delta(G) + 1)^-$ -vertex x. Assume that $N(v) = \{x, y, z\}$, $N(x) = \{v, x_1, ..., x_t\}$, where $t \leq k - \Delta(G)$. The graph G' = G - vx admits an acyclic edge k-coloring ϕ . We may assume that $\phi(xx_i) = i$ for $i \in \{1, ..., t\}$. If $i \notin C_{\phi}(v)$ for all $i \in \{1, ..., k - \Delta(G)\}$, then we can color vx with a color appearing neither on v nor on x. Otherwise, we have $\{1, ..., t\} \cap C_{\phi}(v) \neq \emptyset$. Without loss of generality, let $\phi(vy) = 1$.

Case 1. $\phi(vz) \notin \{1, ..., t\}.$

Let $\phi(vz) = t + 1$. Then, for $t + 2 \le i \le k$, there is a (1, i)-path from v to x through y and x_1 , since otherwise, we can color vx with i. This implies that $t = k - \Delta(G)$, and $C_{\phi}(y) = \{1, k - \Delta(G) + 2, \dots, k\}$. If there exists a color in $\{k - \Delta(G) + 2, \dots, k\}$, say α , such that $\alpha \in S_{\phi}(z)$, then we recolor vz with α and color vx with t + 1. Since there is a $(1, \alpha)$ -path from v to x through y, there is no $(1, \alpha)$ -path from v to z through y. This implies that the resulting coloring is an acyclic edge coloring of G, a contradiction.

Download English Version:

https://daneshyari.com/en/article/427878

Download Persian Version:

https://daneshyari.com/article/427878

Daneshyari.com