Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Information Processing Letters

www.elsevier.com/locate/ipl

Acyclic chromatic index of planar graphs with triangles

Jianfeng Hou a, Nicolas Roussel ^b*,*c*,*∗, Jianliang Wu ^d

^a *Center for Discrete Mathematics, Fuzhou University, Fujian, China*

^b *National Taiwan University, Department of Mathematics, Taipei, Taiwan*

^c *National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan*

^d *School of Mathematics, Shandong University, Jinan, China*

article info abstract

Article history: Received 22 February 2011 Received in revised form 27 May 2011 Accepted 30 May 2011 Available online 1 June 2011 Communicated by J. Torán

Keywords: Graph algorithms Acyclic edge coloring Planar graph Distance between triangles

1. Introduction

In this paper, all graphs considered are finite, simple and undirected. We use $V(G)$, $E(G)$, $\delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph *G*, respectively. For a vertex $v \in V(G)$, let $N(v)$ denote the set of vertices adjacent to *v* and $d_G(v) = |N(v)|$ (or $d(v)$ for simple) denote the *degree* of *v*. A *d*-, *d*+- or *d*−-*vertex* is a vertex of degree *d*, at least *d* or at most *d*, respectively. The *length* or *degree* of a face f , denoted by $d(f)$, is the length of a boundary walk around *f*. In particular, a cut-edge is counted twice. A *d*-, *d*+- or *d*−-*face* or *cycle* is a face or cycle of length *d*, at least *d* or at most *d*, respectively. As usual [*k*] stands for the set {1*,...,k*}.

A *proper edge k-coloring* of a graph *G* is a mapping *φ* from $E(G)$ to the color set $[k]$ such that no pair of incident edges are colored with the same color. A proper edge coloring of a graph *G* is called *acyclic* if there is no

A proper edge coloring of a graph *G* is called acyclic if there is no 2-colored cycle in *G*. The acyclic chromatic index of *G*, denoted by $\chi_a'(G)$, is the least number of colors in an acyclic edge coloring of *G*. Let *G* be a planar graph with maximum degree $\Delta(G)$. In this paper, we show that $\chi_a'(G) \leq \Delta(G) + 4$, if *G* contains no 4-cycle; $\chi_a'(G) \leq \Delta(G) + 5$, if *G* contains no intersecting triangles; and $\chi'_{a}(G) \leq \Delta(G) + 6$ if *G* contains no adjacent triangles.

© 2011 Elsevier B.V. All rights reserved.

2-colored cycle in *G*. In other words, the union of any two color classes induces a subgraph of *G* which is a forest. The *acyclic chromatic index* of *G*, denoted by $\chi'_{a}(G)$, is the least number of colors in an acyclic edge coloring of *G*.

Acyclic edge coloring has been widely studied over the past twenty years. The first general linear upper bound on $\chi'_{a}(G)$ was found by Alon et al. [1] who proved that $\chi'_{a}(G) \le 64\Delta(G)$. This bound was improved to 16 $\Delta(G)$ by Molloy and Reed [15].

In 2001, Alon, Sudakov and Zaks [2] stated the Acyclic Edge Coloring Conjecture, which says that $\chi_a'(G)$ $\Delta(G) + 2$ for every graph *G*. This conjecture was verified for some special classes of graphs, including nonregular graphs with maximum degree at most four [5], subcubic graphs [4,18], outerplanar graphs [13,17], seriesparallel graphs [12], grid like graphs [16], graphs with large girth [2], and so on.

Fiedorowicz et al. [10] gave an upper bound of $2\Delta(G) + 29$ for planar graphs and of $\Delta(G) + 6$ for trianglefree planar graphs. Independently, Hou et al. [12] proved that $\chi'_{a}(G) \le \max\{2\Delta(G) - 2, \Delta(G) + 22\}$ for planar graphs and $\chi'_a(G) \leq \Delta(G) + 2$ for planar graphs with girth at least 5, where the girth of a graph is the length of a shortest cycle in it. For planar graphs with girth at least 5 and

Corresponding author at: National Taiwan University, Department of Mathematics, Taipei, Taiwan.

E-mail addresses: jfhou@fzu.edu.cn (J. Hou), nrous.taipei@gmail.com (N. Roussel), jlwu@sdu.edu.cn (J. Wu).

^{0020-0190/\$ –} see front matter © 2011 Elsevier B.V. All rights reserved. [doi:10.1016/j.ipl.2011.05.023](http://dx.doi.org/10.1016/j.ipl.2011.05.023)

with maximum degree at least 10, $\chi'_{a}(G) = \Delta(G)$ [11,14]. For triangle-free planar graphs, Basavaraju and Chandran [6] proved that $\chi'_a(G) \leq \Delta(G) + 3$.

Borowiecki and Fiedorowicz [7] showed that $\chi_a'(G)$ \leqslant $\Delta(G)$ + 15 for planar graphs without cycles of length 4. The first result of this paper improves the bound to $\Delta(G) + 4$.

Theorem 1. *Let G be a planar graph without* 4*-cycles. Then* $\chi'_a(G) \leq \Delta(G) + 4$ *.*

The following two results are for planar graphs without close triangles. Two triangles are *intersecting* if they have at least one vertex in common. Two triangles are *adjacent* if they have at least one edge in common.

Theorem 2. *Let G be a planar graph without intersecting triangles.* Then $\chi'_{a}(G) \leq \Delta(G) + 5$ *.*

Theorem 3. *Let G be a planar graph without adjacent triangles. Then* $\chi_a'(G) \leq \Delta(G) + 6$ *.*

2. Critical graphs

Let ϕ : $E(G) \rightarrow [k]$ be an edge *k*-coloring of *G*. For a vertex $v \in V(G)$ and an edge *e* incident with *v*, we say that the color ϕ (*e*) *appears* on *v*. Let $C_{\phi}(v) = {\phi(uv) | u \in N(v)}$ and $S_\phi(v) = [k] - C_\phi(v)$. An (α, β) -path is a path consisting of edges that are colored *α* and *β* alternately. A graph *G* is called an *acyclically edge k-critical graph* if $\chi_a'(G) > k$ and every proper subgraph of *G* is acyclically edge *k*-colorable. In particular, such a graph has maximum degree at most *k*.

Lemma 1. *If G is an acyclically edge k-critical graph, then G is* 2*-connected.*

Proof. By contradiction, let *v* be a cut vertex of *G* and let *C*₁,...,*C*_t ($t \ge 2$) be the connected components of *G* − *v*. By the choice of G, for each $1 \leqslant i \leqslant t$, there is an acyclic edge coloring ϕ_i of $G_i = C_i \cup \{v\}$ with *k* colors. We can permute the colors in each ϕ ^{*i*} (if needed) such that the colors appearing on the edges incident with *v* are all different. Now the union of these colorings will be an acyclic edge coloring of G . \Box

Lemma 2. *Let G be an acyclically edge k-critical graph and v be* a d-vertex of G with neighbors x_1, \ldots, x_d , then $\sum_{i=1}^d d(x_i) \geqslant 1$ $k + d$.

Proof. Suppose to the contrary that $\sum_{i=1}^{d} d(x_i) \leq k + d - 1$. Then the graph $G' = G - v$ admits an acyclic edge *k*coloring ϕ by the choice of *G*. Assume $d(x_1) \geqslant \cdots \geqslant$ $d(x_d) \geqslant 2$ by Lemma 1 and $A_i = \bigcup_{j=i}^d C_\phi(x_j)$ for $i \in$ {1*,...,d*}. Then

$$
|A_i| \leq \sum_{j=i}^d (d(x_j) - 1) = \sum_{j=1}^d (d(x_j) - 1) - \sum_{j=1}^{i-1} (d(x_j) - 1)
$$

$$
\leq \sum_{j=1}^d (d(x_j) - 1) - (i - 1) \leq k - i
$$

for $i \in \{2, ..., d\}$. We can choose a color $\alpha_1 \notin A_1$ to color *vx*₁ and a color $\alpha_i \notin A_i$ and different from $\alpha_1, \ldots, \alpha_{i-1}$ to color vx_i for $i \in \{2, ..., d\}$. This produces a proper edge coloring of *G*. Now we show that there is no 2-colored cycle. Cycles that do not contain *v* have edges of at least three colors as the edge coloring of *G'* was acyclic. Now a cycle containing v must contain the edges vx_i , vx_j , say *i* < *j* and an edge $x_i w$ with $w \in N(x_i)$. By construction, the colors on vx_i , vx_i , x_iw are distinct. Thus the resulting coloring is an acyclic edge *k*-coloring of *G*, which is a contradiction. \Box

Corollary 4. *Let G be an acyclically edge k-critical graph. If k* $2\Delta(G) - 1$, then G has no 2-vertices. If $k \leq 2\Delta(G) - 2$, then *the neighbors of every* 2*-vertex of G have degree at least k* − $\Delta(G) + 2$.

Lemma 3. *Let G be an acyclically edge k-critical graph with* $k \leqslant 2\Delta(G) - 2$ and v be a vertex of G adjacent to a 2-vertex *w. Then v is adjacent to at least* $k - \Delta(G) + 1$ *vertices of degree at least* $k - \Delta(G) + 2$.

Proof. Suppose to the contrary that *v* is adjacent to at most $k - \Delta(G)$ vertices of degrees at least $k - \Delta(G) + 2$. By the choice of *G*, $G - w$ admits an acyclic edge *k*-coloring ϕ . Let *u* be the other neighbor of *w*. Then $|S_{\phi}(u)| = k (d(u) - 1)$ ≥ $k - \Delta(G) + 1$. Note that every color in $S_{\phi}(u)$ must appear on the vertex *v*, since otherwise, we can color *uw* with a color *α* ∈ *S*^{*φ*}(*u*) − *C*^{*φ*}(*v*) and choose a color *β* different from *α* and not appearing on *v* to color *w v*. Since *v* is adjacent to at most $k - \Delta(G)$ vertices of degrees at least $k - \Delta(G) + 2$, there exists a $(k - \Delta(G) + 1)^{-2}$ vertex in *N*(*v*), say *x*, such that ϕ (*vx*) \in *S*_{ϕ}(*u*). Then we color *wu* with $\phi(vx)$ and color *vw* with a color neither in $C_{\phi}(v)$ nor in $C_{\phi}(x)$, this is possible since $|C_{\phi}(v) \cup C_{\phi}(x)| \le$ *d*(*v*) − 2 + *d*(*x*) $\le k - 1$. \Box

Lemma 4. *Let G be an acyclically edge k-critical graph with* $k \geq \Delta(G) + 2$ *and v be a* 3*-vertex of G. Then the neighbors of v have degree at least k* $-\Delta(G) + 2$ *.*

Proof. Suppose to the contrary that *v* is adjacent to a *(k* − Δ (*G*) + 1)[−]-vertex *x*. Assume that *N*(*v*) = {*x, y, z*}, $N(x) = \{v, x_1, \ldots, x_t\}$, where $t \leq k - \Delta(G)$. The graph $G' =$ *G* − *vx* admits an acyclic edge *k*-coloring *φ*. We may assume that ϕ (*xx_i*) = *i* for $i \in \{1, ..., t\}$. If $i \notin C_{\phi}(v)$ for all *i* ∈ {1, ..., *k* − Δ (*G*)}, then we can color *vx* with a color appearing neither on *v* nor on *x*. Otherwise, we have $\{1, ..., t\} ∩ C_{\phi}(v) \neq \emptyset$. Without loss of generality, let $\phi(vy) = 1.$

Case 1. $\phi(vz) \notin \{1, ..., t\}.$

Let $\phi(vz) = t + 1$. Then, for $t + 2 \leq i \leq k$, there is a $(1, i)$ -path from *v* to *x* through *y* and x_1 , since otherwise, we can color *vx* with *i*. This implies that $t = k - \Delta(G)$, and $C_{\phi}(y) = \{1, k - \Delta(G) + 2, ..., k\}$. If there exists a color in ${k – \Delta(G) + 2, ..., k}$, say α , such that $\alpha \in S_{\phi}(z)$, then we recolor *vz* with α and color *vx* with $t + 1$. Since there is a *(*1*,α)*-path from *v* to *x* through *y*, there is no *(*1*,α)* path from *v* to *z* through *y*. This implies that the resulting coloring is an acyclic edge coloring of *G*, a contradiction. Download English Version:

<https://daneshyari.com/en/article/427878>

Download Persian Version:

<https://daneshyari.com/article/427878>

[Daneshyari.com](https://daneshyari.com)