ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Information Processing Letters 106 (2008) 45-51

Information
Processing
Letters

www.elsevier.com/locate/ipl

Slicing for modern program structures: a theory for eliminating
irrelevant loops

Torben Amtoft 2

Department of Computing and Information Sciences, Kansas State University, Manhattan, KS 66506, USA
Received 1 July 2007; received in revised form 17 September 2007; accepted 2 October 2007
Available online 7 October 2007

Communicated by G. Morrisett

Abstract

Slicing is a program transformation technique with numerous applications, as it allows the user to focus on the parts of a program
that are relevant for a given purpose. Ideally, the slice program should have the same termination properties as the original program,
but to keep the slices manageable, it might be preferable to slice away loops that do not affect the values of relevant variables. This
paper provides the first theoretical foundation to reason about non-termination insensitive slicing without assuming the presence
of a unique end node. A slice is required to be closed under data dependence and under a recently proposed variant of control
dependence, called weak order dependence. This allows a simulation-based correctness proof for a correctness criterion stating

that the observational behavior of the original program must be a prefix of the behavior of the slice program.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Program slicing; Control dependence; Observable behavior; Simulation techniques; Programming languages; Compilers

1. Introduction

Program slicing [12,11] has been applied for many
purposes: compiler optimizations, debugging, model
checking, protocol understanding, etc. Given the control
flow graph (CFG) of a program and given a slicing cri-
terion, the sets of nodes of interest, the following steps
are involved in slicing:

E-mail address: tamtoft@cis.ksu.edu.
URL: http://people.cis.ksu.edu/~tamtoft.

1 Supported in part by AFOSR and by Rockwell Collins.

2 The author would like to thank John Hatcliff and Venkatesh Prasad
Ranganath for many interesting discussions and for comments on a
draft of this paper, and also several anonymous referees for useful
suggestions.

0020-0190/$ — see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ip1.2007.10.002

(i) compute the slice, a set of nodes which includes the
slicing criterion as well as those nodes that the slic-
ing criterion depends on (directly or indirectly, with
respect to data or with respect to control);

(ii) create the slice program, essentially by removing
the nodes that are not in the slice.

One way to express the correctness of slicing is to de-
mand that the observable behavior of the slice program
is “similar” to the observable behavior of the original
program. If “similar” implies that one is infinite exactly
when the other is, as is often required in applications
such as model checking, the slice must include all nodes
that may influence the guards of potential loops. This
can be achieved by weakening the “control dependence”
relation, but the resulting slices may be so large that they



46 T. Amtoft / Information Processing Letters 106 (2008) 45-51

are less useful in applications such as program compre-
hension.

Most previous work on the theoretical foundation
of slicing [2,5] assumes that the underlying CFG has
a unique end node. This restriction prevents a smooth
handling of control structures where methods have
multiple exit points, or—more importantly—zero exit
points (as in case of indefinitely running reactive sys-
tems). As reported in [9,10], the author was part of
work that investigated notions of control dependencies
suitable for handling arbitrary CFGs. The main result

tscd .
was to propose one control dependence ("5 designed

to preserve termination properties, and another (m—uid)
which allows the termination domain to increase; both
coincide with classical definitions on CFGs with unique
end nodes.

In [9] it is shown, using (weak) bisimulation as is
known from concurrency [7] and first proposed for slic-
ing purposes (for multi-threaded programs) in [4], that

slicing based on nised preserves observable behavior, in
particular termination, provided the CFG is reducible
(with or without a unique end node). To handle also irre-
ducible CFGs (as is needed to model state charts), [10]

. 4 1.7 dod

proposed several notions of “order dependence”, like —
(13 Tt kA WOd (13 S5

(“decisive”) and — (“weak’), and proved that for an ar-

bitrary CFG, slicing based on risgd and on dod preserves
observable behavior. Still, [9,10] does not attempt to

prove the correctness (modulo termination properties)

.. .. . icd
of slicing based on definitions like e

The main contribution of this paper is to provide
a result yet missing in the literature: a provably cor-
rect slicing technique which is able to handle arbitrary
CFGs, including those needed to model reactive sys-
tems (and/or state charts), and which allows loops not
influencing relevant values to be sliced away.

Our approach explores the abovementioned notion of
weak order dependence, to be motivated in Section 3
which argues that it also captures control dependence.
Its key virtue is to ensure that each node has a unique
“next observable”, with an observable being a node rel-
evant to the slicing criterion. This allows (Section 4) a
crisp correctness proof, establishing a (one-way) simu-
lation property which states that if the original program
can do some observable action then so can the slice
program. (The reverse does not hold, as the original pro-
gram may get stuck in some unobservable loop.) First
we briefly summarize concepts important to program
slicing, most of which are standard (see, e.g., [8,2]) but
with a twist similar to [9,10].

2. Standard definitions

A control flow graph G is a labeled directed graph,
with nodes representing statements in a program, and
with edges representing control flow. A node is either
a statement node, having at most one successor, or a
predicate node, having two successors—one labeled 7',
and another labeled F. There is a distinguished start
node, with no> incoming edges, from which all nodes
are reachable. An end node is a node with no outgo-
ing edges; if there is exactly one end node n, and n, is
reachable from all other nodes, we say that G satisfies
the unique end node property.

To relate a procedure (method) body to its CFG we
use a “code map” code that maps each CFG node to
the code for the corresponding program statement. The
function def (ref’) maps each node to the set of program
variables defined (referenced) at that node. For example,
a statement that branches on the boolean expression B
is represented as a predicate node n with code(n) = B?
and def (n) = 0.

A path w in G from ny to ng, written as [nj..nx],
is a sequence of nodes ny, ny, ..., n; where for all i €
1...k—1, G contains an edge from n; to n;y1; here
k (= 1) is the length of the path which is non-trivial if
k > 1. If there is a path of length k from n to m, but no
shorter path, we write dist® (n,m) =k.

To illustrate the standard notions of dependence, con-
sider the CFGs in Fig. 1 which all have a unique end
node e, chosen as our slicing criterion.

In (I), e is data dependent on b, according to

Definition 1. Node » is data dependent on m, writ-

ten m ﬂ n, if there exists a variable v such that v €
def(m) N ref(n), and there exists a non-trivial path
[n1..nr] with ny = m and n;r = n where for all i €
2...k—1,v ¢def(n;).

But neither b or e are data dependent on a or ¢ which
thus are irrelevant to the slicing criterion, so we may
safely update code so that code(a) = code(c) = skip.
The resulting program and the original program behave
identically on e.

In (II), it holds that b ﬂj) e so the slice must include b
—and also the predicate node a, since otherwise slicing
would update code(a) to either true? or false?, causing
b to be possibly either improperly executed or improp-
erly bypassed; in all cases, y might end up with a wrong

3 To save space, not all our examples satisfy this, but they can easily
be transformed so as to do.



Download English Version:

https://daneshyari.com/en/article/427976

Download Persian Version:

https://daneshyari.com/article/427976

Daneshyari.com


https://daneshyari.com/en/article/427976
https://daneshyari.com/article/427976
https://daneshyari.com

