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Abstract

We give two optimal linear-time algorithms for computing the Longest Previous Factor (LPF) array corresponding to a string w.
For any position i in w, LPF[i] gives the length of the longest factor of w starting at position i that occurs previously in w. Several
properties and applications of LPF are investigated. They include computing the Lempel–Ziv factorization of a string and detecting
all repetitions (runs) in a string in linear time independently of the integer alphabet size.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a string w, we introduce the Longest Pre-
vious Factor (LPF) array defined as follows. For any
position i in w, LPF[i] gives the length of the longest
factor of w starting at position i that occurs previ-
ously in w. Formally, if w[i] denotes the ith letter of
w and w[i . . j ] is the factor w[i]w[i + 1] . . .w[j ], then

✩ This work has been presented at the AutoMathA’07 Conference,
see [M. Crochemore, L. Ilie, Computing local periodicities in strings,
invited talk, AutoMathA’07, Palermo, Italy, June 2007 [5]].
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LPF[i] = max
({

� | w[i. . i + � − 1] is a factor

of w[0. . i + � − 2]} ∪ {0}).
We give two linear-time (optimal) algorithms for com-
puting LPF using suffix arrays. The first uses no addi-
tional information whereas the second uses the longest
common prefix array which is often part of the suffix ar-
ray data structure. Previously such algorithms involved
computing the suffix trees, which are more complex and
take a lot of space. Also, a logarithmic factor of the size
of the alphabet often appears in the complexity. Our al-
gorithms use suffix arrays, are much simpler, and their
complexity is alphabet independent.

One important application is computing the Lempel–
Ziv factorization [14]. Recently Abouelhoda et al. [1]
gave a suffix-array-based algorithm for computing
Lempel–Ziv factorization. However, their algorithm is
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i SA[i] LCP[i] sufSA[i] prev<[SA[i]] prev>[SA[i]] LPF[SA[i]] PrevOcc[SA[i]]
0 8 0 aaabab −1 3 2 3
1 9 2 aabab 8 3 3 3
2 3 3 aabbbaaabab −1 0 1 0
3 12 1 ab 3 10 2 10
4 10 2 abab 3 0 2 0
5 0 2 abbaabbbaaabab −1 −1 0 −1
6 4 3 abbbaaabab 0 2 3 0
7 13 0 b 4 7 1 7
8 7 1 baaabab 4 2 3 2
9 2 3 baabbbaaabab 0 1 1 1

10 11 2 bab 2 6 2 2
11 6 1 bbaaabab 2 1 4 1
12 1 4 bbaabbbaaabab 0 −1 0 −1
13 5 2 bbbaaabab 1 −1 2 1

Fig. 1. The arrays SA, LCP, and LPF for the string abbaabbbaaabab.

essentially a simulation of the suffix tree using the suf-
fix array. The description in [1] is very brief but it seems
that their approach can be used to achieve similar goals
with ours, nevertheless in a significantly more compli-
cated way.

Simultaneously and independently of our work,
Chen et al. [2] gave an algorithm that is similar with
our second one. Our first algorithm is more general and
our approach for the second gives a clearer explanation
as well as more insight into the structure of LPF.

2. Suffix arrays

We recall in this section briefly the notions of suf-
fix array and longest common prefix. Consider a string
w = w[0 . . n − 1] of length n over an alphabet A that
is an integer interval of size no more than nc, for some
constant c. The suffix of w starting at position i is de-
noted by sufi = w[i. . n − 1], for 0 � i � n − 1. The
suffix array of w, [16], denoted SA, gives the suffixes of
w sorted ascendingly in lexicographical order, that is,
sufSA[0] < sufSA[1] < · · · < sufSA[n−1]. The suffix array
of the string abbaabbbaaabab is shown in the second
column of Fig. 1.

Often the suffix array is used in combination with an-
other array, the Longest Common Prefix (LCP) which
gives the length of the longest common prefix be-
tween consecutive suffixes of SA, that is, LCP[i] is the
length of the longest common prefix of sufSA[i] and
sufSA[i−1]; see the third column of Fig. 1 for an exam-
ple.

3. A direct algorithm

We give first a direct algorithm for computing LPF
from the suffix array. We compute also, for each i, a po-

sition PrevOcc[i] < i where the longest previous factor
at i occurs.3 (If LPF[i] = 0, then PrevOcc[i] = −1.)
Both arrays for our example are shown in the last two
columns in Fig. 1.

The idea of the algorithm is as follows. For any posi-
tion i, the longest factor starting at i that occurs also to
the left of i in w is the longest common prefix between
the suffix sufi and the suffixes starting to the left of i in
w, that is, sufj , 0 � j � i − 1. However, given SA, we
need only consider those which are closest to sufi in SA.
We shall therefore compute, for each i, the closest posi-
tions in SA that are smaller than i; in most cases there
will be two such positions, one before and one after i

in SA. Denote them by prev<[i] and prev>[i], respec-
tively. If one of them does not exists, then we assign the
value −1; see columns 5 and 6 in Fig. 1. Rephrasing the
above, LPF[i] is obtained as the length of the longest
common prefix between sufi and either sufprev<[i] or
sufprev>[i], whichever is longer.

After prev< and prev> are found, LPF is computed
for all values of i in increasing order, using the property
that LPF[i] � LPF[i − 1] − 1. Thus, we already know
that w[i . . i + LPF[i − 1] − 2] occurred to the left of i

and need only try to extend it. A problem appears be-
cause we do not know whether we should compare sufi
to sufprev<[i] or sufprev>[i]. We shall therefore compute
two arrays, LPF<[0 . . n − 1] and LPF>[0 . . n − 1]; they
have the same meaning as LPF except that they consider
only positions corresponding to suffixes lexicographi-
cally smaller, resp. larger, than sufi . Formally, we have

3 Note that a suffix-tree-based algorithm would compute the left-
most such position in the string whereas our algorithm might produce
a different one. For instance, in our example, PrevOcc[12] = 10 but
the left most occurrence of ab starts at 0.
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