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We consider the on-line two-machine job shop scheduling problem with time lags so as to
minimize the makespan. Each job consists of no more than two operations and time lags
exist between the completion time of the first and the start time of the second operation of
any two-operation job. We prove that any greedy algorithm is 2-competitive. For the non-
clairvoyant variant of the problem, no on-line algorithm can do better. For the clairvoyant

variant, no on-line delay algorithm has a competitive ratio better than
√

5+1
2 ≈ 1.618, and

a greedy algorithm is still the best on-line non-delay algorithm. We also show that the
same results hold for the two-machine flow shop problem with time lags.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider the two-machine job shop problem with
time lags, where jobs arrive over time, to minimize the
makespan. In such a system, there is a set J of n in-
dependent jobs J1, . . . , Jn that needs scheduling on two
machines M1 and M2. Each job J j ∈ J consists of no more
than two operations O ij (i = 1,2), and operation O ij re-
quires processing on machine Mi during an uninterrupted
non-negative processing time pij (i = 1,2; j = 1, . . . ,n).
The sequence of operations for each job is prescribed. Let
J 1 be the set containing all jobs for which O 1 j has to be
scheduled before O 2 j or O 2 j is missing (hence need not
be scheduled), and let J 2 be the set containing all jobs
for which O 2 j has to be scheduled before O 1 j or O 1 j is
missing, where j = 1, . . . ,n. We have J = J 1 ∪ J 2.

Either machine is available from time 0 onwards and
can handle only one job at a time. For each job J j there is
a time lag l j required between the completion of its first
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and the start of its second operation. All jobs have release
times, which means that the first operation of any job J j
cannot be started before its release time r j ( j = 1, . . . ,n).
Preemption of jobs, that is, interrupting a job and resuming
in at a later point in time, is not allowed. The objective is
to minimize the maximum completion time Cmax, that is,
to find a schedule of minimum length or makespan. Fol-
lowing the standard three-field α|β|γ scheduling notation
(Graham et al. [2]), we denote the problem as J2|o j � 2,

r j, l j |Cmax, where o j is the number of operations of job J j

( j = 1, . . . ,n). If J 2 = ∅ or J 1 = ∅, the problem reduces
to the corresponding two-machine flow shop problem, de-
noted as F 2|r j, l j |Cmax.

Time lags have several practical interpretations. They
can model the transportation times between machines if
the number of vehicles is not restrictive, or if the jobs can
travel by themselves, like for example barges sailing be-
tween port terminals for loading and unloading containers.
Time lags can also model required heating or cooling down
times.

The complexity of the off-line version of J2|o j � 2,

r j, l j |Cmax, where all job data are known a priori, is rel-
atively well understood. It is strongly NP-hard, even in the
case of unit processing times, since the two-machine flow
shop problem F 2|pij = 1, l j |Cmax is already strongly NP-
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hard (Yu [8]; Yu et al. [9]). Dell’Amico [1] showed that
any instance of J 2|o j � 2, l j |Cmax can be solved by solv-
ing two instances of F 2|l j |Cmax. Therefore, if all time lags
are equal or if the solution of F 2|l j |Cmax is restricted to
the class of permutation schedules, the related two cases
of J 2|o j � 2, l j |Cmax are polynomially solvable. Panwalkar
[5] identified another well-solvable special case of the job
shop problem with time lags. As far as we know, there ex-
ists no approximation algorithm for the general J 2|o j � 2,

l j |Cmax problem.
We study the on-line version, where the jobs dynam-

ically arrive at a priori unknown points in time (the so-
called release times) and the job data are not known a pri-
ori. We also do not know the number of jobs to be sched-
uled. In particular, we study the non-clairvoyant variant, in
which the processing time of an operation is unknown un-
til it has finished, and the required time lag is unknown
until it has elapsed.

The quality of an on-line algorithm is typically mea-
sured by its competitive ratio, and an on-line algorithm is
called ρ-competitive if the objective value of the schedule
produced by the on-line algorithm is at most ρ times the
value of an optimal off-line solution, for any instance of
the problem. An on-line algorithm is called best possible if
no one-line algorithm has a lower competitive ratio.

Results for on-line job shop and flow shop schedul-
ing problems with time lags are very scarce. For the
case with unit execution time and arbitrary time lags
without release times, Rayward-Smith and Rebaine [6]
present (2 − 3

n+2 )-competitive algorithms for F 2|on-line,
pij = 1, l j |Cmax. The competitive ratio is proved to be tight,
which means that the ratio holds with equality for spe-
cific instances of the problem. For the case without time
lags, Sgall [7] shows that no deterministic algorithm is bet-
ter than 2-competitive for F 2|on-line|Cmax. For the on-line
two-machine open shop problem with time lags, Zhang
and Van de Velde [10] prove that any greedy algorithm
has a tight competitive ratio of 2 and this ratio is 5/3 in
case of small time lags, that is, if the maximum time lag
is no larger than the smallest processing time. A greedy al-
gorithm for an on-line scheduling problem with time lags
assigns to a machine any available operation as soon as the
machine becomes available. Zhang and Van de Velde [10]
also prove that no on-line non-delay algorithm can have
a better competitive ratio. As far as delay algorithms are
concerned, that is, algorithms that allow a machine to be
idle while an operation is available for processing, no de-
lay algorithm can do better than a greedy algorithm for the
non-clairvoyant variant of the problem. For the clairvoyant
variant, no on-line delay algorithm has a competitive ratio
better than

√
2.

In this paper, we analyze the performance of a greedy
algorithm for the on-line version of J 2|o j � 2, r j, l j |Cmax
that processes an available operation as soon as possi-
ble, with ties broken arbitrarily. Accordingly, the resulting
schedule is non-delay, that is, no machine is kept idle while
an operation is waiting to be processed.

We prove that the competitive ratio of any greedy
algorithm is 2, this bound is tight, and no on-line non-
delay algorithm can do better. Using an adversary strat-
egy argument, we also prove that no on-line delay al-

gorithm can have a better performance guarantee for
the non-clairvoyant variant of the problem. For the clair-
voyant version of the problem, we prove that no on-
line delay algorithm can have a better competitive ratio

than
√

5+1
2 ≈ 1.618. We prove that these results apply to

F 2|on-line, r j, l j |Cmax also.

2. Performance analysis of a greedy algorithm

Let G be any greedy algorithm. We prove that G
is 2-competitive for the on-line two machine job shop
scheduling problem with time lags.

Let r j be the arrival time of job J j ( j = 1, . . . ,n). For
a given instance, let C∗

max denote the minimum makespan
and C G

max denote the makespan of the schedule given by
the greedy algorithm G . Due to symmetry of the argument,
we can assume without loss of generality that machine M2
finishes last. For the schedule constructed by G , let Sij and
Cij denote the starting and completing time of O ij , respec-
tively (i = 1,2; j = 1, . . . ,n).

For any subset H ⊆ { J1, . . . , Jn}, we define

r(H) = min
J j∈H

r j,

p1(H) =
∑

J j∈H
p1 j,

p2(H) =
∑

J j∈H
p2 j,

C(H) = max
J j∈H

(r j + p1 j + l j + p2 j).

Clearly, we have that

C∗
max � max

H∈J

{
r(H) + p1(H), r(H) + p2(H), C(H)

}
. (1)

Lemma 1. If there is no idle time before C G
max on machine M2 ,

then C∗
max = C G

max .

So, in the remainder we suppose machine M2 has idle
time before C G

max.
Let T denote the last point in time such that M2 is busy

throughout the time interval [T , C G
max] but idle immedi-

ately before time T . Consider now the jobs with S2 j � T
on machine M2. We divide these jobs into two disjoint
subsets: subset X contains all the jobs with r j < T , and
subset Y contains all the jobs with r j � T .

Lemma 2. If X = ∅, we have C∗
max = C G

max .

Proof. Note that if X = ∅, then Y cannot be empty, and
hence we have that

C G
max = T + p2(Y) � r(Y) + p2(Y) � C∗

max.

So, if X = ∅, then the greedy algorithm G has returned an
optimal schedule. �
Lemma 3. If Y 	= ∅, we have C G

max � 2C∗
max .
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