ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Information Processing Letters 106 (2008) 221-231

Information
Processing
Letters

www.elsevier.com/locate/ipl

Ant colony optimization with partial order reduction for discovering
safety property violations in concurrent models ™

Francisco Chicano *, Enrique Alba

Departamento de Lenguajes y Ciencias de la Computacion, University of Mdlaga, Spain
Received 16 June 2007; received in revised form 24 October 2007; accepted 21 November 2007
Available online 20 February 2008

Communicated by L. Boasson

Abstract

In this article we analyze the combination of ACOhg, a new metaheuristic algorithm, plus partial order reduction applied to the
problem of finding safety property violations in concurrent models using a model checking approach. ACOhg is a new kind of ant
colony optimization algorithm inspired by the foraging behavior of real ants equipped with internal resorts to search in very large
search landscapes. We here apply ACOhg to concurrent models in scenarios located near the edge of the existing knowledge in
detecting property violations. The results state that the combination is computationally beneficial for the search and represents a
considerable step forward in this field with respect to exact and other heuristic techniques.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Program correctness; Ant colony optimization; Metaheuristics; Model checking; HSF-SPIN

1. Introduction

From the very beginning of computer research, com-
puter engineers have been interested in techniques al-
lowing them to know if a software module fulfills a
set of requirements (its specification). These techniques
are especially important in critical software, such as
airplane, nuclear plants, and spacecraft software con-
trollers, in which people’s lives depend on the software
system. In addition, modern non-critical software (like

* This work has been partially funded by the Ministry of Education
and Science and FEDER under contract TIN2005-08818-C04-01 (the
OPLINK project). Francisco Chicano is supported by a grant (BOJA
68/2003) from the Junta de Andalucia.

* Corresponding author.

E-mail addresses: chicano@lcc.uma.es (F. Chicano),
eat@lcc.uma.es (E. Alba).

0020-0190/$ — see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ipl.2007.11.015

communication protocols) is very complex and these
techniques have become a necessity in most software
companies. Model checking [8] is a well-known and
fully automatic formal method in which all the possi-
ble states of a given model are analyzed (in an explicit
or implicit way) in order to prove (or refute) that the
model satisfies a given property. This property is speci-
fied using a temporal logic like Linear Temporal Logic
(LTL) or Computation Tree Logic (CTL).

In a recent work [3], a new kind of ant colony op-
timization algorithm called ACOhg was applied to the
problem of finding safety property violations in con-
current models using a model-checking based approach.
The new algorithm is able to get short error paths (good
quality solutions) with a low amount of memory in all
the studied models. The contribution of the present work
is to combine ACOhg with a technique for reducing



222 F. Chicano, E. Alba / Information Processing Letters 106 (2008) 221-231

the memory consumption of the algorithm: partial order
reduction [14]. With this combination we expect to re-
duce even more the amount of computational resources
required by ACOhg to find execution error paths in con-
current models. This is a very important step forward in
software engineering, since it allows the construction of
efficient tools for checking real software.

This article is organized as follows. In the next sec-
tion, we present the background and related work. Sec-
tion 3 formalizes the problem at hands and describes
both the ACOhg algorithm and the partial order reduc-
tion. In Section 4 we apply ACOhg with and without
partial order reduction and analyze the results. Finally,
Section 5 summarizes our conclusions and future work.

2. Background

Our proposal is based on explicit state model check-
ing. One of the best known explicit state model checkers
is SPIN [19], which takes a software model codified
in Promela and a property specified in LTL as inputs.
SPIN transforms the model and the negation of the LTL
formula into Biichi automata in order to perform their
intersection. The resulting intersection automaton is ex-
plored to search for a path starting in the initial state
and including a cycle of states containing an accepting
state. If such a path is found, then there exists at least
one execution of the model not fulfilling the LTL prop-
erty (see [19] for more details). If such kind of path does
not exist, then the model fulfills the property and the
verification ends with success. In SPIN this exploration
is performed with Nested-DFS [20], an exhaustive al-
gorithm. When the property to check is a safety prop-
erty [23], the verification is reduced to a search for one
path from the initial state to one accepting state in the
Biichi automaton. This path represents an execution of
the concurrent model in which the given safety property
is violated. Finding such a path is the case in which we
are interested.

The amount of states of the intersection automaton
is very high even in the case of small models, and it in-
creases exponentially with their size. This fact is known
as the state explosion problem and limits the size of
the model that a model checker can verify. This limit
is reached when it is not able to explore more states due
to the absence of free computer memory. Several tech-
niques exist to alleviate this problem. They aim at re-
ducing the amount of memory required for the search by
following different approaches. On the one hand, there
are techniques which reduce the number of states to ex-
plore, such as partial order reduction [22] or symmetry
reduction [21]. On the other hand, techniques exist that

reduce the memory required for storing one state, such
as state compression, minimal automaton representation
of reachable states, and bitstate hashing [19]. In spite
of the fact that they are largely used, exhaustive search
techniques such as Nested-DFS are always handicapped
since real concurrent programs are too complex even for
the most advanced techniques.

In the first stages of the software development, when
the probability of finding errors in the software is high, a
good practice consists in guiding this exhaustive search
by means of heuristics to gain in efficiency when search-
ing for errors. The utilization of heuristics in model
checking is well known and called heuristic or directed
model checking. The heuristics are designed to explore
first the region of the state space in which an error is
likely to be found. This way, the time and memory re-
quired to find an error in faulty concurrent models is
reduced on average. However, no benefit from heuristics
is obtained when the goal is to verify that a given model
fulfills a given property. In this case, the state space must
be explored exhaustively. Exhaustive algorithms using
heuristics, such as A* or Best First (BF), can find er-
rors in models by using less resources than non-heuristic
exhaustive approaches like Depth First Search (DFS)
and Breadth First Search (BFS) and, in addition, they
can verify the model if no error exists (since they are
exhaustive algorithms) [11]. However, when the search
for errors with a very low amount of computational re-
sources (memory and time) is a priority, non-exhaustive
algorithms using heuristic information can be used. One
example of this class of algorithms is Beam-search, in-
cluded in the Java PathFinder model checker [16,17].
Non-exhaustive algorithms have been shown to find er-
rors in programs using less computational resources
than exhaustive algorithms [2,3].

A well-known class of non-exhaustive algorithms for
solving general complex problems is the class of meta-
heuristic algorithms [6]. They are search algorithms
used in global optimization problems which can find
good quality solutions in a reasonable time. The search
for accepting states in a Biichi automaton can be trans-
lated into an optimization problem and, thus, meta-
heuristic algorithms can be applied. In fact, Genetic
Algorithms (GA), a kind of metaheuristic algorithm,
have been applied in the past to the search for errors
in concurrent programs. In an early proposal, Alba and
Troya [5] used GAs for detecting errors (deadlocks,
useless states, and useless transitions) in communica-
tion protocols. To the best of our knowledge, this is
the first application of a metaheuristic algorithm to the
problem of finding errors in concurrent models using a
model-checking based approach. Later, Godefroid and



Download English Version:

https://daneshyari.com/en/article/428259

Download Persian Version:

https://daneshyari.com/article/428259

Daneshyari.com


https://daneshyari.com/en/article/428259
https://daneshyari.com/article/428259
https://daneshyari.com

