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Should one always use repeated squaring
for modular exponentiation?
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Abstract

Modular exponentiation is a frequent task, in particular for many cryptographic applications. To accelerate modular exponen-
tiation for very large integers one may use repeated squaring, which is based on representing the exponent in the standard binary
numeration system. We show here that for certain applications, replacing the standard system by one based on Fibonacci numbers
may yield a new line of time/space tradeoffs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Modular exponentiation is defined as the task of rais-
ing a number a to a power m and considering the result
modulo some integer N . This is a frequent and time
consuming operation, and has many applications, in par-
ticular in cryptography. In a typical setting, a, m and N

are large integers, say of the order of 21024, so it is not
feasible to calculate am mod N by using m−1 multipli-
cations, each followed by a modulo operation. The stan-
dard solution to this problem is using repeated squaring
and appears in many handbooks on algorithms, such as
[4,2,8] to cite just a few.

To improve readability, we shall not always explicitly
mention that the multiplications are to be taken modulo
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N , which is fixed throughout the paper. Note that in-
stead of calculating

a8 = a × a × a × · · · × a︸ ︷︷ ︸
8 factors

,

the number of multiplications can be reduced by repeat-
edly squaring the results:

a8 = (
(a2)2)2

.

If m is not a power of two, it can be expressed as a sum
of such powers, giving, for example, a12 = a8 × a4. For
the general case, consider the standard binary repre-
sentation of m as a sum of powers of 2, that is m =∑�log2 m�

i=0 bi2i , where each bi ∈ {0,1}. Then

am = ab0 × a2b1 × a4b2 × · · · × a2i bi × · · · .
The procedure is thus as follows: prepare a list of basis
items a, a2, . . . , a2i

, . . . where each element is obtained
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by taking its predecessor in the list, squaring it, and re-
ducing the result modulo N ; then take the subset of this
list corresponding to the 1-bits in the binary represen-
tation of m and multiply the elements of this subset.
Denoting the number of 1-bits in the binary represen-
tation of m by h(m), the number of multiplications is
thus �log2 m� + h(m) − 1.

This is not necessarily the minimum number of
required multiplications. For example, for m = 15,
�log2 m� + h(m) − 1 = 6, but a15 can be evaluated in
5 operations, calculating first d = a5 = (a2)2 × a in
3 multiplications, and then a15 = d3 = d2 × d in two
more multiplications; see Knuth [10, Section 4.6.3] for
an investigation of the function l(m), giving the small-
est number of multiplications necessary to calculate am.
We are, however, not interested in finding the mini-
mum number for each given exponent m, but are rather
looking for a general algorithm, giving good average
performance when applied with a large number of possi-
ble values m. Repeated squaring is one such algorithm,
and the point of this work is to show that for certain
applications, a different general evaluation procedure
might be preferable.

2. Alternatives to repeated squaring

2.1. Standard k-ary number system

As mentioned above, the standard evaluation algo-
rithm is based on representing the exponent m in the
standard binary number system as m = ∑�log2 m�

i=0 bi2i ,
with bi ∈ {0,1}, yielding �log2 m� + h(m) − 1 multipli-
cations. The first term can be reduced to �logk m� for
k > 2, if one uses the standard k-ary number system in

which one can represent m as m = ∑�logk m�
i=0 cik

i , with

ci ∈ {0,1, . . . , k −1}. However, the basis elements aki+1

cannot be anymore evaluated by a single multiplication
from preceding basis elements:

aki+1 = aki ·k = (aki

)k,

so for k = 2, only one multiplication is needed (this is
squaring), but for k = 3, one needs two multiplication,
for k = 4 also two multiplications are sufficient (squar-
ing twice), etc.

Table 1 presents the relevant data for k = 2, . . . ,9.
The second column gives the number l(k) of required
operations for the calculation of each basis element. The
number of necessary basis elements is the number of
k-ary digits, which is logk N , where N is the modulus
mentioned above, and this is normalized in the third col-
umn, which gives the number of basis elements in units

of log2 N . The fourth column is the total number of mul-
tiplications needed for all the basis elements, again in
units of log2 N .

After having evaluated the basis elements, the mem-
bers of a selected subset of them have to be multiplied.

If m = ∑�logk m�
i=0 cik

i , the basis element aki
is raised to

power ci in l(ci) multiplications if ci > 0, and one more
multiplication is needed per basis element with ci > 0
to get the final product. Assuming that the exponent m

is chosen at random, each of the digits 0,1, . . . , k − 1
appears in each position with probability 1/k. The ex-
pected number of multiplications for a given digit is thus
1
k

∑k−1
i=1 (l(i) + 1), and these values appear in the fifth

column of Table 1. The sixth column is then the average
number of multiplications taking all the digits into ac-
count, and the seventh column, headed total # mult, is the
total sum of operations for both the basis elements and
the product of the elements of the subset, again in units
of log2 N . One sees that though interestingly, the total
number of multiplications is not monotonically increas-
ing with the order k of the number system, the minimum
is still reached for the binary case k = 2, so among these
alternatives, binary squaring still seems to be the best
choice.

There are nevertheless options to reduce the num-
ber of required multiplication [9]. The so-called k-ary
method uses precomputed values a2, a3, . . . , ak−1 and
Horner’s rule as follows. Setting r(k) = �logk m�, the
equation for the representation of m in basis k can be
rewritten as

m =
r(k)∑
i=0

cik
i = c0 + k

(
c1 + k

(
c2 + · · ·

+ k(cr(k)−1 + kcr(k)) · · ·)).
This suggests that am can be evaluated iteratively as
follows, working from the innermost parentheses out-
wards:

precompute A[j ] ← aj for j = 1,2, . . . , k − 1
R ← 1
for i ← r(k) to 0 by −1

R ← Rk

if ci > 0 then R ← R × A[ci]
The expected number of multiplications in each it-

eration for a randomly chosen m is l(k) + (k − 1)/k,
as l(k) operations are necessary to raise R to the kth
power and one more to multiply with A[ci], but ci will
be zero with probability 1/k. The last column of Table 1
displays the total number of required multiplications in
units of log2 N . As can be seen, it is possible to get bet-
ter values than the 1.5 needed for k = 2, in particular for
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