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Approximate maximum weight branchings
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Abstract

We consider a special subgraph of a weighted directed graph: one comprising only the k heaviest edges incoming to each vertex.
We show that the maximum weight branching in this subgraph closely approximates the maximum weight branching in the original
graph. Specifically, it is within a factor of k/(k + 1). Our interest in finding branchings in this subgraph is motivated by a data
compression application in which calculating edge weights is expensive but estimating which are the heaviest k incoming edges
is easy. An additional benefit is that since algorithms for finding branchings run in time linear in the number of edges our results
imply faster algorithms although we sacrifice optimality by a small factor. We also extend our results to the case of edge-disjoint
branchings of maximum weight and to maximum weight spanning forests.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G = (V ,E), (V ,B) is a branching if
B is a subset of E such that each vertex in (V ,B) has in-
degree at most one and there are no cycles. Branchings
are basic graph structures which have found applica-
tions in various fields of computer science. Motivated
by a data compression problem [12] we prove the fol-
lowing general theorem about weighted branchings:

Define Gk to be a subgraph of a directed graph G

where each node only retains its k heaviest incoming
edges. If w(Gk) is the weight of a maximum weight
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branching on Gk and w(G) is the weight of a maximum
weight branching on the entire graph G, then

w(Gk)

w(G)
� 1 − 1

k + 1
.

Thus, we can compute a branching with weight al-
most as large as the maximum possible weight on a
dense graph by only considering a few incoming edges
for each vertex. Since algorithms for computing maxi-
mum weight branchings [15,3] depend at least linearly
on the number of edges in the graph, this implies faster
algorithms for approximate maximum weight branch-
ing after appropriate preprocessing of the dense graph.
More importantly, in many scenarios that can be mod-
eled as graph problems, the main cost is in computing
appropriate edge weights for the input graph rather than
in the actual graph computation; our result implies that
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for branching problems it suffices to exactly compute
only the weights of the heaviest edges in the reduction.

1.1. A simple application of maximum weight
branching

Consider the following simple application in the con-
text of data compression [12], which provided the initial
motivation for our work. We are interested in compress-
ing a collection of files where there is a significant
degree of similarity (or redundancy) between many of
the files. For example, web pages from the same site
frequently share certain elements in their page layout
and menu structure, and may also contain some similar
and repeated content. This inter-file redundancy can be
exploited to achieve better overall compression of the
collection.

The process of compressing one file (the target file)
with respect to another file (the reference file) is called
delta compression or differential compression [7,9,17,
10]. But given a collection of n files, in what order
should we apply delta compression between pairs of
files to minimize the overall size? There is an expo-
nential number of possible orderings of the pairwise
compression steps. Obviously, it is beneficial to com-
press each file with respect to another very similar file.
However, we have to avoid cycles, such as A being com-
pressed with respect to B and B being compressed with
respect to A, since it would be impossible to uncom-
press the resulting data.

This scenario [12], as well as related problems in
the compression of web graphs [1] and multispectral
images [16], can be modeled as a maximum weight
branching problem on a directed graph. Finding an op-
timal set of delta compression steps is equivalent to
finding a maximum weight branching on a complete di-
rected graph with one node vA for each file A in the
collection, where edge (vA, vB) has a weight equal to
the savings in bits obtained by delta compressing B with
respect to A instead of compressing B by itself [12].

One problem with this reduction is that the result-
ing graph has n2 edges, slowing down the maximum
weight branching computation. However, in practice a
much more significant challenge is the computation of
the edge weights: The only way to determine the precise
weight of an edge is to actually run the delta compressor
on the two files involved. Of course, the final branch-
ing usually contains mostly fairly heavy edges, and thus
it would be highly desirable to compute for each node
only the weights of these most promising edges, in-
stead of materializing the entire graph. Fortunately, in
our scenario efficient techniques are known for estimat-

ing the similarities among pairs of files and for finding
for each file the k most similar other files (or k-nearest
neighbors) under various definitions of file similarity
[11,2,6,8].

Thus, a promising approach would be to compute
only the weights of the incoming edges from the k most
similar files for each node, and then compute the max-
imum weight branching on this subgraph. But can we
show that this results in a compression scheme that
is almost as good as using the complete graph? There
are two issues here. First, the techniques for finding k-
nearest neighbors in [11,2,6,8] assume certain formal
similarity measures between files that do not precisely
model the benefit obtained by an actual delta compres-
sor that uses a combination of various state-of-the-art
compression techniques to minimize size. However, this
issue is unlikely to be completely resolved, and in prac-
tice the known techniques seem to be able to iden-
tify promising references files for each file. The second
question is, assuming that we have correctly identified
for each file the k best references files, if we run a
branching computation on this subgraph are we guaran-
teed to get a compression scheme whose benefit approx-
imates that of a scheme based on the complete graph?

This question lead us to the following very sim-
ple and natural conjecture about maximum weight
branchings: If w(Gk) is the weight of a maximum
weight branching on a subgraph of G where each
node only retains its k heaviest incoming edges, and
w(G) the weight of a maximum weight branching on
the entire graph, we conjecture that w(Gk)/w(G) �
1 − 1/(k + 1).

In this paper we settle the above conjecture in the af-
firmative. We also show that this result can be extended
in a natural way to c edge disjoint branchings [4] of
maximum total weight, and to maximum weight span-
ning forests in undirected graphs.

2. Maximum weight branchings

We consider a directed graph G = (V ,E) with an
edge weight function w :E → R

+. A branching (V ,B)

is a subgraph of G with an edge set B ⊆ E such that
(V ,B) is acyclic and the in-degree of any vertex of
(V ,B) is at most 1. Note that in general, a branching
forms a forest of rooted directed trees. The weight of a
branching B is w(B) = ∑

e∈B w(e). A maximum weight
branching is a branching with weight at least that of any
other branching.

We define the k-heavy subgraph of G, denoted Gk ,
as the subgraph that contains only the k heaviest edges
incoming to each vertex. If the in-degree of a vertex is



Download English Version:

https://daneshyari.com/en/article/428366

Download Persian Version:

https://daneshyari.com/article/428366

Daneshyari.com

https://daneshyari.com/en/article/428366
https://daneshyari.com/article/428366
https://daneshyari.com

