
Information Processing Letters 99 (2006) 158–162

www.elsevier.com/locate/ipl

On obtaining the Boyer–Moore string-matching algorithm
by partial evaluation ✩

Olivier Danvy ∗, Henning Korsholm Rohde

BRICS 1, Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, 8200 Aarhus N, Denmark

Received 1 September 2005

Available online 15 May 2006

Communicated by G. Morrisett

Abstract

We present the first derivation of the search phase of the Boyer–Moore string-matching algorithm by partial evaluation of an
inefficient string matcher. The derivation hinges on identifying the bad-character-shift heuristic as a binding-time improvement,
bounded static variation. An inefficient string matcher incorporating this binding-time improvement specializes into the search
phase of the Horspool algorithm, which is a simplified variant of the Boyer–Moore algorithm. Combining the bad-character-shift
binding-time improvement with our previous results yields a new binding-time-improved string matcher that specializes into the
search phase of the Boyer–Moore algorithm.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Partial evaluation; Binding-time improvement; Bounded static variation; Horspool string-matching algorithm; Boyer–Moore
string-matching algorithm; Algorithms; Analysis of algorithms; Data structures; Design of algorithms; Functional programming; Program
correctness; Program derivation; Program specification; Programming languages; Software design and implementation; Theory of computation

1. Introduction

String matching is a traditional application of partial
evaluation, and obtaining the search phases of linear-
time algorithms out of inefficient string matchers has
become a standard benchmark [12,15]. The obtained al-
gorithms include several non-trivial ones, notably the
Knuth–Morris–Pratt left-to-right string-matching algo-

✩ This work is partially supported by the ESPRIT Working Group
APPSEM II (http://www.appsem.org) and by the Danish Natural Sci-
ence Research Council, Grant no. 21-03-0545.

* Corresponding author.
E-mail addresses: danvy@brics.dk (O. Danvy), hense@brics.dk

(H.K. Rohde).
1 Basic Research in Computer Science (http://www.brics.dk),

funded by the Danish National Research Foundation.

rithm [13] and simplified variants of the Boyer–Moore
right-to-left string-matching algorithm [5].

The Boyer–Moore algorithm uses two heuristics:
good-suffix and bad-character-shift. We observe that on
one hand, the simplified variants of the Boyer–Moore
search phase obtained by partial evaluation use only
the good-suffix heuristic [2,4,9,10,14], and that on the
other hand, Horspool uses only the bad-character-shift
heuristic for his own string matcher [11]. In the present
work, we use both heuristics.

We follow the partial-evaluation tradition of improv-
ing the binding times of an inefficient string matcher to
make it specialize to a known string matcher [7]:

(1) Our first step is to express the bad-character-shift
heuristic as a binding-time improvement in a naive,
inefficient string matcher. Specializing the binding-

0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.04.001

O. Danvy, H.K. Rohde / Information Processing Letters 99 (2006) 158–162 159

time improved string matcher yields the search
phase of the Horspool string matcher, which is a
new result.

(2) We then combine the bad-character-shift binding-
time improvement with our previous results [2]
and present a new binding-time-improved string
matcher. Specializing this string matcher yields the
search phase of the Boyer–Moore string matcher,
which is our main result.

Overview. Section 2 presents the technical background:
string matching, the starting inefficient string matcher,
partial evaluation, and binding-time improvements.
Section 3 presents the bad-character-shift heuristic and
shows how to obtain the Horspool algorithm. Section 4
shows how to obtain the Boyer–Moore algorithm. We
then address correctness issues in Section 5.

2. Preliminaries

String matching. A string-matching algorithm finds the
first occurrence of a pattern string, p = p0p1 . . . pm−1,
in a text string, t = t0t1 . . . tn−1, where strings are se-
quences of atomic characters of some finite alphabet, Σ .

The following naive string matcher (adapted from
our earlier work [2]) compares the characters of the
pattern against the text from right to left, as does the
Boyer–Moore string matcher:

main(p, t) = match(p, t, |p| − 1, |p| − 1)

match(p, t, j, k)

= if j = −1
then match at k + 1
else if k � |t |

then no match
else compare(p, t, j, k)

compare(p, t, j, k)

= if pj = tk
then match(p, t, j − 1, k − 1)

else let offset = compute_offset(p, t, j, k)

in match(p, t, |p| − 1, k + offset)

compute_offset(p, t, j, k) = |p| − j

This program returns match at k (i.e., a result of type
int) if the left-most occurrence of p in t begins at in-
dex k, and no match (i.e., a result of type unit) if p does
not occur in t . We will use this program as a template for
our binding-time-improved programs, modifying only
the definition of compute_offset. Note that this func-
tion here naively increments the pattern position (i.e.,
k − j) by one. Since the pattern position is only incre-
mented after a mismatch, pj−1 �= tk−1 (i.e., a witness

of non-occurrence at the current pattern position), the
naive string matcher is clearly correct.

Partial evaluation. Partial evaluation is a program
transformation that propagates constants, unfolds calls,
and computes constant expressions [8,12]. Its goal is
to specialize programs. Given a string matcher of type
pattern × text → int + unit and a pattern string p, a
partial evaluator generates a program of type text →
int + unit such that for any text string t , running the
source string matcher on p and t yields the same result
as running the generated program on t alone.

Binding-time improvements. A binding-time improve-
ment is a source-program transformation that makes a
program specialize better [12, Chapter 12]. For exam-
ple, if we assume x to be of boolean type and unknown
at partial-evaluation time, we can transform the func-
tion call “foo(x)” into “case x of true → foo(true) |
false → foo(false)”, by enumerating the possible values
of x. The transformation is a binding-time improve-
ment because the argument of foo changes from be-
ing known only at run time (dynamic) to being known
already at partial-evaluation time (static). This partic-
ular binding-time improvement—colloquially known
as “The Trick”—is more descriptively referred to as
“bounded static variation” nowadays [12].

Partial evaluation applied to string matching. Effi-
cient string matchers usually consist of a pre-calculation
phase (on the pattern) and a search phase (on the pattern,
the result of the pre-calculation, and the text). Ideally, by
specializing a string matcher with respect to a pattern,
a partial evaluator computes what amounts to a pre-
calculation phase and yields a specialized program that
computes the search phase (on the text). A naive string
matcher such as the one above, however, does not read-
ily allow significant optimization through specializa-
tion. Successful partial evaluation of string matchers is
based on the observation that after every character com-
parison, static information about the dynamic text must
be maintained, expressed as equalities (‘ti = pj ’) or in-
equalities (‘ti �= pj ’) with characters from the pattern.
Keeping and using this information at partial-evaluation
time, either by a clever partial evaluator or by a clever
rewriting of the naive string matcher (i.e., a binding-
time improvement), is the key to obtaining specialized
programs that compute the search phase efficiently.

Challenge. Although generally successful [2–4,7,9,10,
12,14,15], so far the program-specialization approach to

Download English Version:

https://daneshyari.com/en/article/428389

Download Persian Version:

https://daneshyari.com/article/428389

Daneshyari.com

https://daneshyari.com/en/article/428389
https://daneshyari.com/article/428389
https://daneshyari.com

