
Information Processing Letters 99 (2006) 163–170

www.elsevier.com/locate/ipl

Strong normalization proofs by CPS-translations

Satoshi Ikeda ∗, Koji Nakazawa

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Accepted 20 March 2006

Available online 27 April 2006

Communicated by G. Morrisett

Abstract

This paper proposes a new proof method for strong normalization of classical natural deduction and calculi with control opera-
tors. For this purpose, we introduce a new CPS-translation, continuation and garbage passing style (CGPS) translation. We show
that this CGPS-translation method gives simple proofs of strong normalization of λμ→∧∨⊥ , which is introduced in [P. de Groote,
Strong normalization of classical natural deduction with disjunction, in: S. Abramsky (Ed.), Typed Lambda Calculi and Applica-
tions, 5th International Conference, TLCA 2001, in: Lecture Notes in Comput. Sci., vol. 2044, Springer, Berlin, 2001, pp. 182–196]
by de Groote and corresponds to the classical natural deduction with disjunctions and permutative conversions.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Programming calculi; Continuation passing style translation; Strong normalization; Classical natural deduction; Permutative
conversion

1. Introduction

Since Griffin pointed out the correspondence be-
tween classical logic and programming languages with
control operators in [7], many typed calculi correspond-
ing to classical logic have been introduced. Parigot’s
λμ-calculus in [12] is one of such calculi, which is
an extension of λ-calculus and corresponds to classi-
cal natural deduction with the rule for reduction to ab-
surdity. As Ong and Stewart pointed out in [11], the
λμ-calculus is also important as an abstract program-
ming language. They introduced a call-by-value variant
of the λμ-calculus and showed that several control oper-
ators can be simulated in the call-by-value λμ-calculus.

* Corresponding author.
E-mail addresses: s-ikeda@kuis.kyoto-u.ac.jp (S. Ikeda),

knak@kuis.kyoto-u.ac.jp (K. Nakazawa).

De Groote introduced in [3] another calculus λμ→∧∨⊥ ,
which is an extension of λμ-calculus. It corresponds to
the classical natural deduction with conjunctions, dis-
junctions and permutative conversions.

Strong normalization is one of the most important
properties of typed calculi, because it guarantees termi-
nation of execution of well-typed terms for any evalua-
tion strategy. In [13], Parigot proved the strong normal-
ization of λμ-calculus in two ways. One is the reducibil-
ity method, and the other uses the continuation passing
style (CPS) translation, which translates λμ-terms to
λ-terms and preserves reduction relation and typability.
By the CPS-translation any infinite reduction sequence
from any well-typed λμ-term is translated to an infinite
reduction sequence from a well-typed λ-term. Hence,
we can reduce strong normalization of λμ-calculus to
that of λ-calculus. This idea is also used for other cal-
culi, λμ→∧∨⊥ [3], call-by-value λμ-calculus [5], and a
typed calculus λ→

exn for exception handling [2].

0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.03.009

164 S. Ikeda, K. Nakazawa / Information Processing Letters 99 (2006) 163–170

x : τ ∈ Γ

Γ � x : τ ;Δ (Ax)
Γ, x :σ � M : τ ;Δ

Γ � λx.M :σ → τ ;Δ (Abs)
Γ � M : τ → σ ;Δ Γ � N : τ ;Δ

Γ � MN :σ ;Δ (App)

Γ � M :⊥;Δ,α :σ

Γ � μα.M :σ ;Δ (MuAbs)
Γ � M :σ ;Δ,α :σ

Γ � αM :⊥;Δ,α :σ
(Nam)

Fig. 1. Typing rules of λμ-calculus.

However, these proofs by CPS-translations do not
work, as Nakazawa and Tatsuta [10] and Matthes [8]
pointed out. In many cases, CPS-translations which pre-
serve not only convertibility but also reduction relations
are defined by reducing redexes of control operators.
Therefore, if a subterm in the source program is elim-
inated by a reduction of control operators, it is not kept
in the result of the CPS-translation. As for λμ-calculus
and its reduction preserving CPS-translation in [13], for
example, any structural reduction (μ-reduction) step
is executed in the CPS-translation, that is, if M is re-
duced to N by structural reduction, then M and N

are identical, where M denotes the CPS-translation
of M . Therefore, the CPS-translation of (μα.x)N is
identical with the CPS-translation of μα.x for any N ;
hence, any redex in N is erased by the CPS-translation.
This is called erasing-continuations in [10]. Because
of erasing-continuations, reduction relations of one or
more steps are not necessarily preserved, which makes
it difficult to prove strong normalization. All proofs by
CPS-translations in [13,3,5,2] fail because of the same
erasing-continuation problem.

In this paper, we introduce a new CPS-translation,
continuation and garbage passing style translation
(CGPS-translation). In CGPS-translation, not only con-
tinuations but also garbage terms are passed. Garbage
terms contain all continuations passed in the CPS-trans-
lation. Because any part of the source program is kept in
garbage terms, any redex in the source program remains
in its CGPS-translation. Therefore, CGPS-translations
enable us to avoid erasing-continuation problem and to
prove strong normalization properties.

Furthermore, we show that CGPS-translations yield
correct strong normalization proofs of λμ-calculus and
λμ→∧∨⊥ .

2. Strong normalization proof by CPS-translation

In this section, we explain the idea and difficulty of
strong normalization proofs by CPS-translations, taking
the case of the λμ-calculus as an example.

The λμ-calculus is introduced in [12] as a term as-
signment system for second-order classical natural de-
duction with the rule for reduction to absurdity:

Γ ;Δ,¬σ � ⊥
Γ ;Δ � σ

,

where σ is a formula, Γ is a set of assumptions and Δ

is a set of negated assumptions. In this paper, we adopt
two-sided notation for judgments, where the above rule
is denoted by

Γ � ⊥;Δ,σ

Γ � σ ;Δ .

Definition 2.1 (λμ-calculus). Types of the λμ-calculus
are second-order propositional formulas

σ, τ ::= X | ⊥ | σ → τ,

where X denotes type variables. The negation ¬σ is de-
fined as ¬σ ≡ σ → ⊥. The λμ-calculus has two distinct
term-variables λ-variables (x, y, . . .) and μ-variables
(α,β, . . .). Terms are defined as

M,N ::= x | λx.M | MN | μα.M | αM.

In λ-abstraction λx.M and μ-abstraction μα.M , the
variables x and α are bound, respectively. The name of
bound variables is changed as usual when required.

Typing rules are given in Fig. 1, where Γ (Δ) de-
notes a set of types labeled by λ-variables (μ-variables)
and is called λ-context (μ-context, respectively). It is
not permitted that a context contains two different types
labeled by a same variable. Singular contexts are de-
fined as C ::= []M . For C ≡ []M , C[N] denotes the term
NM .

The ordinary substitution to λ-variables M[x := N]
is defined as usual. We have the structural substitution
M[α ⇐ C], which is obtained by replacing each sub-
term of M of the form αN by αC[N [α ⇐ C]]. Reduc-
tion rules are the following.

(β) (λx.M)N →β M[x := N],
(μ) C[μαM] →μ μα.M[α ⇐ C].
The one-step reduction relation → is the congruence re-
lation defined by both reduction rules. Similarly, →β is
defined by only (β), and →μ by only (μ). →μ is called
structural reduction. →∗ is the reflexive transitive clo-
sure of →, →+ is the transitive closure of →, which we
call strict reduction relation. The relations →∗

β , →+
β ,

→∗
μ, and →+

μ are defined similarly.

Download English Version:

https://daneshyari.com/en/article/428390

Download Persian Version:

https://daneshyari.com/article/428390

Daneshyari.com

https://daneshyari.com/en/article/428390
https://daneshyari.com/article/428390
https://daneshyari.com

