
Information Processing Letters 101 (2007) 46–51

www.elsevier.com/locate/ipl

Theorem-proving anonymity of infinite-state systems

Yoshinobu Kawabe ∗, Ken Mano, Hideki Sakurada, Yasuyuki Tsukada

NTT Communication Science Laboratories, NTT Corporation, Japan

Received 30 May 2005; received in revised form 8 February 2006; accepted 26 June 2006

Available online 23 August 2006

Communicated by D. Basin

Keywords: Anonymity; Verification; Infinite-state system; I/O-automaton; Theorem proving; Formal methods; Safety/security in digital systems

1. Introduction

The notion of anonymity is present in many fields of
human activity, e.g. anonymous donation, voting, sub-
mitting poems (anonymously), whistle-blowing, and re-
viewing technical papers. On the Internet, there are also
many services and protocols where anonymity should
be provided. For example, an electronic voting system
should guarantee anonymity to prevent the disclosure of
who voted for which candidate.

Recently, there have been several studies based on
formal methods that analyzed the anonymity of dis-
tributed systems [1–3]. A computer-assisted proof tech-
nique with model-checking also appeared in [5], but this
technique cannot handle infinite-state systems directly.
A proof technique that incorporates theorem-proving
makes it possible to handle the anonymity of infinite-
state systems. This paper presents an inductive method
for verifying the anonymity of distributed systems with
a theorem prover. We employ an I/O-automaton [4] to
describe a distributed, possibly infinite-state, system.
We first extend the formulation of anonymity described
in [5] to devise the concept of trace anonymity, which is
defined with the set of traces of an I/O-automaton. Then,

* Corresponding author.
E-mail address: kawabe@theory.brl.ntt.co.jp (Y. Kawabe).

we introduce a proof technique with an anonymous sim-
ulation, which is an inductive method for proving trace
anonymity. We show the existence of an anonymous
simulation implies trace anonymity. We also demon-
strate theorem-proving anonymity for an infinite-state
system.

2. I/O-automaton

I/O-automaton X has a set of actions sig(X), a set
of states states(X), a set of initial states start(X) ⊂
states(X) and a set of transitions trans(X) ⊂ states(X)×
sig(X) × states(X). We use in(X), out(X) and int(X)

for the set of input, output and internal actions, respec-
tively; that is, sig(X) = in(X) ∪ out(X) ∪ int(X). We
assume that in(X), out(X) and int(X) are disjoint. We
define ext(X) = out(X)∪ in(X) whose element is called
an external action. For simplicity, we only deal with I/O-
automaton X satisfying in(X) = ∅; that is, we assume
that ext(X) = out(X). Transition (s, a, s′) ∈ trans(X)

is written as s
a→X s′; we also write s →X s′ if a is

internal. We define a relation �X is the reflexive tran-
sitive closure of →X . For any a ∈ sig(X) and s, s′ ∈
states(X), we write s

a⇒ s′ for s �X s1
a→X s2 �X s′

with some s1, s2 ∈ states(X) if a is external, or for
s �X s′ if a is internal. For any s0 ∈ start(X) and tran-

sition sequence α ≡ s0
a1→X s1

a2→X · · · an→X sn, the trace

0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.06.016



Y. Kawabe et al. / Information Processing Letters 101 (2007) 46–51 47

of α is the sub-sequence of a1a2 · · ·an consisting of all
the external actions. In addition, we write traces(X) for
the entire set of X’s traces.

3. Formalizing anonymity

This paper’s approach to anonymity is based on the
so-called “principle of confusion”. That is, a system is
anonymous if one user can cause a certain observable
trace, then it is possible for the other users to cause
the same trace (modulo special actions with regard to
a user’s identity).

3.1. Trace anonymity

Definition 1. Let X be an I/O-automaton and A be a
family with the following conditions: (i)

⋃
A′∈A A′ ⊂

ext(X); (ii) A′ and A′′ are disjoint for any distinct
A′,A′′ ∈ A. We call A a family of X’s actor actions,
and an element of

⋃
A′∈A A′ is called an actor action

(on A).

Actor actions are introduced by a protocol designer
to discuss the anonymity of the protocol, while non-
actor actions are employed to specify the body of the
protocol. The occurrences of different actor actions
should be indistinguishable to an adversary. This is for-
malized as follows.

Definition 2. Let X be an I/O-automaton and A be a
family of X’s actor actions. We define I/O-automaton
anonymA(X) as follows:

states
(
anonymA(X)

) = states(X),

start
(
anonymA(X)

) = start(X),

ext
(
anonymA(X)

) = ext(X),

int
(
anonymA(X)

) = int(X) and

trans
(
anonymA(X)

)
=

{
(s1, a, s2) | (s1, a, s2) ∈ trans(X) ∧ a /∈

⋃
A′∈A

A′
}

∪ {
(s1, a, s2) | (s1, a

′, s2) ∈ trans(X) ∧ A′ ∈ A ∧
a′ ∈ A′ ∧ a ∈ A′}.

We say X is trace anonymous on A if

traces
(
anonymA(X)

) = traces(X)

holds.

Intuitively, anonymA(X) is anonymous in the sense

that if s
someone−→ anonymA(X) s′ holds for some someone ∈

automaton Jukebox
signature
output startJB(qt:NonZeroNat, id:AorB),

playMusic, playJazz, playRock

states
pc: PC := start,
quarter: NonZeroNat := 1

transitions
output startJB(qt,id)

pre pc = start
eff quarter := qt;

if id = Alice then pc := jazz
else pc := rock fi

output playMusic
pre (pc = jazz \/ pc = rock)

/\ quarter ~= 1
eff quarter := quarter-1

output playJazz output playRock
pre pc = jazz pre pc = rock

/\ quarter = 1 /\ quarter = 1
eff pc := stop eff pc := stop

Fig. 1. Specification of Jukebox.

A′ with A′ ∈ A then s
everyone−→ anonymA(X) s′ holds for

any everyone ∈ A′. If we have traces(anonymA(X)) =
traces(X) then anonymA(X)’s anonymity leads to X’s
anonymity.

To explain trace anonymity, we consider a simple
example. There is an electric jukebox in a building. If
someone inserts n-quarters, the jukebox distributes the
digital data of n-songs wirelessly. To listen to the music,
people in the building use a device such as a PDA, which
can receive and play the music data in real time. There
are two people, Alice and Bob, and one of them is go-
ing to insert coins in the jukebox anonymously; namely,
he/she does not want anyone to know who inserted the
coins. He/she may select songs randomly, but for the
last one, he/she always chooses a title from a favorite
genre. Alice and Bob love jazz and rock music, re-
spectively. Fig. 1 describes the above as I/O-automaton
Jukebox in the IOA specification language [6]; its be-
havior is also depicted in Fig. 2. Fig. 1 has three por-
tions: (i) signature declares actions; (ii) states
declares variables and their initial value; (iii) transi-
tions defines the body of actions, where each action
consists of a precondition and an effect. In this ex-
ample, we assume that the occurrence of startJB(n,
Alice) and that of startJB(n, Bob) are indis-
tinguishable to an adversary, and we employ A =
{{startJB(n,Alice),startJB(n,Bob)} | n ∈ {1,



Download	English	Version:

https://daneshyari.com/en/article/428435

Download	Persian	Version:

https://daneshyari.com/article/428435

Daneshyari.com

https://daneshyari.com/en/article/428435
https://daneshyari.com/article/428435
https://daneshyari.com/

