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Abstract

A low-complex algorithm is proposed for the hardware/software partitioning. The proposed algorithm employs dynamic pro-
gramming principles while accounting for communication delays. It is shown that the time complexity of the latest algorithm has
been reduced from O(n2 ·A) to O(n ·A), without increase in space complexity, forn code fragments and hardware areaA.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Most modern electronic systems are composed by
both hardware and software. In the design of such mixed
hardware/software (Hw/Sw) systems, co-design tech-
niques play more important role. It dominantly affects to
overall system performance [1–5]. Hw/Sw partitioning
has been proposed over the last decade. It transforms an
application specification into communicating hardware
and software components of an embedded system that
exhibit the desired behavior and satisfy the performance
constraints. Software is more flexible and cheaper, but
hardware is faster. Thus, efficient techniques for Hw/Sw
partitioning can achieve results superior to software-
only solution.

Earlier approaches in [6–8] are hardware-oriented.
They start with a complete hardware solution and itera-
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tively move parts of the system to the software as long
as the performance constraints are fulfilled. On the other
hand, [2,9,10] are software-oriented, because they start
with a software program moving pieces to hardware to
improve speed until the time constraint is satisfied. In
these approaches performance satisfiability is not part
of the cost function. For this reason, the algorithms can
easily be trapped in a local minimum.

Many approaches emphasis the algorithmic aspects,
e.g., evolution algorithm [11], integer programming [12,
13], simulated annealing algorithm [2,14] and ant sys-
tem algorithm [15]. These approaches are applied to
different architectures and cost functions to provided
sub-optimal solution minimizing the application execu-
tion time. It is difficult to name a clear winner because
there have been no widely accepted benchmarks. Gen-
erally, they require more iterations resulting in longer
design cycle times as the partitioning problem is NP-
complete [16–18].

Despite many heuristics and approaches above, de-
veloping exact algorithms to find an optimal solution
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is still very important. Knudsen and Madsen proposed
an algorithm called PACE employed in the LYCOS
co-synthesis system for partitioning control data flow
graphs (CDFG) into hardware and software parts [19,
20]. PACE is the latest dynamic programming approach.
Its time complexity is O(n2 ·A) and the space complex-
ity is O(n · A) for n code fragments and the available
hardware areaA.

Unlike most of the previous work, in this paper, we
take a theoretical approach focusing only on the algo-
rithmic properties of hardware/software partitioning. In
particular, we do not aim at partitioning for a given ar-
chitecture, nor do we present a complete co-design en-
vironment. Rather, we restrict ourselves to the problem
of deciding, based on given cost values, which compo-
nents of the system to implement in hardware and which
ones in software. Our contribution is reducing the time
complexity of PACE from O(n2 ·A) to O(n ·A) without
increasing the space complexity.

2. Preliminaries

All assumptions in this paper are the same as those
given in [19,20]. In detail, an application corresponds
to a CDFG which is divided into basic scheduling code
fragments/blocks (called blocks in short), that may be
moved between hardware and software. The application
is modeled as a sequence of blocksB1,B2, . . . ,Bn. The
corresponding hardware area, hardware execution time,
software execution time and intercommunication delays
for each block are provided in advance by a synthesis
system, e.g., LYCOS [20]. Fig. 1, cited from [19,20],
shows the computational model for Hw/Sw partition-
ing, in which hardware blocks and software blocks can-
not execute in parallel. It is assumed that the adjacent
hardware blocks are able to communicate the read/write
variables they have in common directly between them
without involving the software side. In Fig. 1,ai denotes
the area penalty of moving blockBi to hardware,si de-
notes the inherent speedup of moving blockBi to hard-
ware, andei denotes the extra speedup which is incurred
because of blocks being able to communicate directly
with each other when they are both placed in hardware.
The objective is to find the optimal partition to realize
the best possible speedup on a given hardware areaA.

LetA correspond to the knapsack size, and the block
Bi correspond to the itemi of the knapsack problem for

Fig. 1. Computational model of 4 blocks.

1 � i � n. This problem can be reduced to the standard
0–1 knapsack problem, one of the NP-complete prob-
lems, for the particular case where the communications
are ignored. It is clear that the problem which considers
communication is more difficult than the one that does
not, and thus the hardness of the problem considered in
this paper is also NP-hard.

3. Algorithms

The algorithm PACE is a dynamic programming ap-
proach. It is based on the fact, thatany possible par-
tition can be thought of as composed of sequences of
blocks [19,20], which leads to the higher computational
complexity. LetSi,j , j � i � 1, denote the sequence of
blocks Bi,Bi+1, . . . ,Bj . Gj is defined as{S1,j , S2,j ,

. . . , Sj,j }, which is called thej th group of the sequence.
G0 is defined as an empty set∅. The area penaltyai,j

of moving Si,j to hardware is computed as the sum of

the individual block areas, i.e.,ai,j = ∑j
k=i ak . We use

following notations to formulize PACE.

1. speedup(Si,j , a) denotes the inherent speedup of
movingSi,j to hardware with available areaa. For
example, in Fig. 1,speedup(S2,3,2) = 14, that is
the sum ofs2, e2 ands3. Whilespeedup(S2,3,1) = 0
because of not enough hardware area forS2,3, i.e.,
a2 + a3 = 2> 1.

2. Bestsp(Gj , a) denotes the best speedup achievable
by first moving a sequence fromGj to hardware
of areaa, and then in the remaining area mov-
ing a sequence from one of the previous groups,
Gj−1,Gj−2, . . . ,G1, to hardware.Bestsp(Gj , a) is
set to 0 forGj = ∅ or a � 0.

3. Bestsp(G1G2 · · ·Gj,a) denotes the best speedup
achievable by moving sequences fromG1,G2, . . . ,
or Gj to hardware of areaa.

The algorithm PACE can be equivalently formulized
to (A). The operation max over all values ofj returns
the maximum of the corresponding set.

(A)




Bestsp(Gj , a) = 0 for j = 0 ora � 0;

speedup(Si,j , a) =




0 for a < ai,j ;∑j
k=i

sk + ∑j−1
k=i

ek

for a � ai,j ;
Bestsp(Gj , a) = max1�i�j

{
speedup(Si,j , a)

+ Bestsp(Gi−1, a − ai,j )
};

Bestsp(G1G2 · · ·Gj ,a)

= max
{
Bestsp(Gj , a),Bestsp(G1G2 · · ·Gj−1, a)

};
i � j, j = 1,2, . . . , n.
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