
Information Processing Letters 116 (2016) 550–553

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A 7/6-approximation algorithm for the minimum 2-edge 

connected subgraph problem in bipartite cubic graphs

Kenjiro Takazawa

Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University, Tokyo 184-8584, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2015
Received in revised form 25 April 2016
Accepted 26 April 2016
Available online 27 April 2016
Communicated by Ł. Kowalik

Keywords:
Approximation algorithms
Minimum 2-edge connected spanning 
subgraphs
{3, 4}-covering 2-factors

The minimum 2-edge connected spanning subgraph problem in 3-edge connected cubic 
bipartite graphs is addressed. For the nonbipartite case, the previous best approximation 
ratio has been 6/5. We exhibit the advantage of bipartiteness to attain an improved 
ratio 7/6.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We address the minimum 2-edge connected spanning sub-
graph problem (M2ECSSP), the objective of which is to find a 
2-edge connected spanning subgraph with minimum num-
ber of edges in a given 2-edge connected graph. This prob-
lem is widely studied in network design, and closely re-
lated to the traveling salesman problem (TSP) as well: if a 
Hamilton cycle exists, then it is an optimal solution. Hence 
this problem is NP-hard even in 3-connected bipartite cu-
bic graphs [1].

While the M2ECSSP is MAX SNP-hard even in cubic 
graphs [6], Khuller and Vishkin [10] gave a 3/2-approxima-
tion algorithm for this problem in general graphs, followed 
by a 17/12-approximation algorithm due to Cheriyan, Sebő 
and Szigeti [4]. The current best ratio is 4/3 due to Sebő 
and Vygen [11].

Improvements in the approximation ratio in several 
graph classes are made. For the M2ECSSP in 3-edge con-
nected cubic graphs, Huh [7] gave a 5/4-approximation 
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algorithm, and Boyd, Iwata, and Takazawa [3] gave a 
further improvement of 6/5-approximation. In subcubic 
graphs, a recent result of Boyd, Fu, and Sun [2] attains 
5/4-approximation.

In this paper we focus on approximation of the
M2ECSSP in bipartite cubic graphs. One motivation to deal 
with this graph class comes from recent intense work 
on the TSP. Unlike other combinatorial optimization prob-
lems such as the matching, covering, and coloring prob-
lems, not many results benefitting from bipartiteness have
been known for the TSP. Recently, however, several im-
provements in the graph-TSP in bipartite cubic graphs are 
presented [5,9,12]. Thus it would be of interest whether 
bipartiteness is also of advantage in the M2ECSSP.

Indeed, we exhibit advantages of bipartiteness to im-
prove the approximation ratio in 3-edge connected cubic 
graphs. Namely, our contribution is a 7/6-approximation 
algorithm for the M2ECSSP in 3-edge connected cubic 
bipartite graphs, which improves upon the current best 
ratio 6/5. We employ the ideas in [3], and prove that 
bipartiteness helps both in improving the approximation 
ratio and in proving that the algorithm does not get 
stuck.
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2. Preliminaries

Let G = (V , E) be a simple undirected graph and let 
n = |V |. For a subgraph H of G , the vertex and edge sets 
of H are denoted by V (H) and E(H), respectively. Let 
δ(H) ⊆ E denote the set of edges having exactly one end-
point in V (H). For X ⊆ V , let G[X] = (X, E[X]) denote the 
subgraph induced by X . The complement of X is denoted 
by X̄ , i.e., X̄ = V \ X .

If every vertex has exactly three incident edges, then G
is called cubic. A subset F of E is a 2-factor if every vertex 
has exactly two incident edges in F . A cycle is defined as a 
connected subgraph in which each vertex has exactly two 
incident edges. For a cycle C , the length of C is defined by 
the number of its edges and denoted by |C |. A path is a 
connected subgraph in which every vertex has exactly two 
incident edges except for two vertices with one incident 
edge.

An edge cut of a connected graph is a minimal subset 
of edges whose removal makes the graph disconnected. 
An edge cut of size k is called a k-edge cut. If the min-
imum size of an edge cut in a graph is k, the graph is 
called k-edge connected. In the present paper, we deal with 
{3, 4}-covering 2-factors, defined as 2-factors intersecting all 
3- and 4-edge cuts. If G is 2-edge connected and cubic, 
a {3, 4}-covering 2-factor always exists [8], and is found in 
O(n3) time [3].

3. A 7/6-approximation algorithm

In this section, we describe an algorithm for finding 
a minimum 2-edge connected spanning subgraph of at 
most 7n/6 − 1 edges in 3-edge connected cubic bipar-
tite graphs. For the nonbipartite case, i.e., for 3-edge con-
nected cubic graphs, Boyd, Iwata and Takazawa [3] de-
signed 6/5-approximation algorithms. While our algorithm 
is mostly the same as an algorithm in [3], a certain differ-
ence appears in the definition of “small” and “large” cycles, 
which directly leads to the improvement of the approxima-
tion ratio.

3.1. A rough sketch

Let G = (V , E) be a 3-edge connected cubic bipartite 
graph. Then G has a {3, 4}-covering 2-factor F , which 
is found in O(n3) time [3,8]. Denote the family of cy-
cles in (V , F ) by CF and let C ∈ CF . We assume that 
V (C) � V , since otherwise (V , F ) is a Hamilton cycle and 
we are done. Clearly δ(C) is an edge cut, and since G is 
3-edge connected and F is {3, 4}-covering, we have that 
|δ(C)| ≥ 5. Thus, |C | ≥ 6 and |δ(C)| ≥ 6 follow since G is 
bipartite and cubic.

Now it is not difficult to attain 4/3-approximation. Con-
tract each cycle in CF and denote the resulting graph by G ′ . 
We remark that G ′ is 2-edge connected and has |CF | ver-
tices. In G ′ , find a 2-edge connected spanning subgraph H ′
with at most 2|CF | − 2 edges. This can be done, for exam-
ple, by finding an ear decomposition and discarding ears 
consisting of a single edge. Finally, the union of F and the 
edge set of H ′ provides a 2-edge connected subgraph of G , 
which consists of n + 2|CF | − 2 ≤ 4n/3 − 2 edges.

A key idea to improving the approximation ratio is that, 
for a small cycle C , we add a Hamilton path in G[V (C)]
instead of C itself, which saves one edge per one small 
cycle. The following lemma plays a key role.

Lemma 1 ([3]). Let G = (V , E) be a 2-edge-connected graph 
and C be a cycle in G with at most two chords. Let V ∗ ⊆ V (C)

be the set of vertices not incident to the chords. For an arbitrary 
vertex v∗ ∈ V ∗ , there is a Hamilton path in G[V (C)] starting at 
v∗ and ending at some vertex u∗ ∈ V ∗ .

Since G is cubic, if C has k chords, then |δ(C)| = |C | −
2k. Since |δ(C)| ≥ 6, if |C | ≤ 10, then C has at most two 
chords and hence Lemma 1 is applied to C . We call a cy-
cle C small if |C | ≤ 10, and large if |C | ≥ 12.

A nontrivial difficulty in this idea is that picking a 
Hamilton path prescribes the next cycle to visit, and this 
cycle might be already contained in the current ear. A de-
tailed argument to resolve this difficulty is described in 
Section 3.2.

We further remark here that the definition of small and 
large cycles is the difference from [3]. In [3], a cycle C is 
small if |C | ≤ 9 and large if |C | ≥ 10. The reason for this 
difference is also described in Section 3.2.

3.2. Lollipops and tadpoles

This subsection is intended to an intuitive understand-
ing of the concepts of lollipops and tadpoles in [3]. A pre-
cise definition appears in the algorithm description in Sec-
tion 3.3.

Recall that G ′ is a graph obtained by contracting the 
cycles in CF . Denote the vertex in G ′ resulting from a 
cycle C ∈ CF by vC . We remark that all procedures are 
executed in G , but keeping G ′ in mind shall provide an 
adequate understanding.

Our purpose is to combine the edges in the large cycles, 
Hamiltonian paths in the small cycles shown in Lemma 1, 
and an ear decomposition in G ′ . However, if we arrive at 
vC such that C is a small cycle in finding an ear decom-
position in G ′ , the next edge to traverse is determined by 
Lemma 1, and then the next vertex vC ′ might be contained 
in the current ear.

In such a case, we continue to construct the current ear. 
The construction depends on whether C ′ is a large cycle or 
a small cycle.

If C ′ is a large cycle, construct a lollipop L, which is a 
subgraph of G consisting of C ′ and the subgraph traversed 
so far by the algorithm after it first encountered C ′ . We 
then update G ′ by contracting the vertices vC such that C
is contained in L to create a new vertex v L , and restart 
constructing an ear from v L . See Fig. 1 for an illustration. 
In Fig. 1, H is a 2-edge connected subgraph consisting of 
previously constructed ears. The current ear under con-
struction consists of vC1 , . . . , vC5 , where C1 and C5 are 
small cycles of length six, and C2, C3 and C4 are large cy-
cles (some vertices in large cycles are omitted). We have 
now reached vC2 again, by traversing a Hamilton path in 
G[V (C5)], and then we construct a lollipop consisting of 
thick edges within and connecting C2, C3, C4 and C5.
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