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We present a polynomial-time algorithm for solving Subgraph Isomorphism where the 
base graphs are bipartite permutation graphs and the pattern graphs are chain graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a base graph G and a pattern graph H , Subgraph 
Isomorphism (SGI for short) asks whether G contains a 
subgraph isomorphic to H , where a subgraph is a graph 
obtained by removing some edges and vertices. The prob-
lem SGI is in NP and generalizes many NP-complete prob-
lems such as Hamiltonicity, Clique, and Bandwidth. Thus
SGI is NP-complete in general [2]. The complexity of SGI

is studied in many aspects including the parameterized 
complexity and graph classes. In this paper, we study SGI

by restricting input graphs to be in some graph classes. 
For studies in the parameterized complexity of SGI, see 
the recent papers by Marx and Pilipczuk [7], Jansen and 
Marx [4], and the references therein.

Since the problem SGI immediately becomes NP-
complete if we allow the input graph class to contain all 
unions of disjoint paths or all unions of disjoint cliques [1], 
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an easy NP-hardness reduction works for most of graph 
classes such as forests and cographs. Kijima et al. [5] thus 
studied a restricted version of SGI that they call Spanning 
Subgraph Isomorphism (SSGI, for short), where the base 
and pattern graphs are connected and have the same num-
ber of vertices. They showed that SSGI is NP-complete even 
for bipartite permutation graphs, proper interval graphs, 
and trivially perfect graphs. On the other hand, they also 
showed that SGI, the problem without the restrictions, is 
polynomial-time solvable for chain graphs, cochain graphs, 
and threshold graphs.

Recently, Konagaya et al. [6] have narrowed the com-
plexity gap by showing that SGI is polynomial-time solv-
able if the base graphs are proper interval graphs (or the 
even larger class of chordal graphs) and the pattern graphs 
are cochain graphs, or if the base graphs are trivially per-
fect graphs and the pattern graphs are threshold graphs. 
The complexity of the case where the base graphs are 
bipartite permutation graphs and the pattern graphs are 
chain graphs remained unsettled.

In this paper, we study the unsettled case and show 
that it is polynomial-time solvable. That is, we show that
SGI is polynomial-time solvable if the base graphs are 
bipartite permutation graphs and the pattern graphs are 
chain graphs.
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2. Preliminaries

Let G = (V G , EG) and H = (V H , E H ) be graphs. We say 
that H is subgraph-isomorphic to G if there exists an injec-
tive adjacency-preserving map η from V H to V G ; that is, 
η(u) �= η(v) if u �= v and {η(u), η(v)} ∈ EG holds for each 
{u, v} ∈ E H . We call such a map η a subgraph-isomorphism
from H to G . We call G and H the base graph and the pat-
tern graph, respectively. Now SGI can be formally stated as 
follows:

Problem. SGI

Instance: A pair of graphs G and H .
Question: Is H subgraph-isomorphic to G?

Let G = (V , E) be a graph. For S ⊆ V , we denote by 
G[S] the subgraph of G induced by S . We denote the 
neighborhood of v ∈ V in G by NG(v). A graph G = (V , E)

is a bipartite graph if the vertex set V can be partitioned 
into two sets X and Y of pairwise nonadjacent vertices. 
We denote such a graph by G = (X, Y ; E) to emphasize 
that it is bipartite. For a map f defined on A and a sub-
set B ⊆ A of the domain, we denote by f (B) the set 
{ f (b) : b ∈ B}.

2.1. Bipartite permutation graphs, chain graphs, and 2-layer 
chain graphs

A graph G = (V , E) with V = {1, 2, . . . , n} is a permu-
tation graph if there is a permutation π over V such that 
{i, j} ∈ E if and only if (i − j)(π(i) − π( j)) < 0. A bipartite 
permutation graph is a permutation graph that is bipartite.

A bipartite graph H = (U , V ; E H ) is a chain graph if the 
vertices can be ordered as U = {u1, u2, . . . , u|U |} and V =
{v1, v2, . . . , v |V |} such that N(u1) ⊆ N(u2) ⊆ · · · ⊆ N(u|U |), 
and N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v |V |). It is known that such 
orderings can be computed in linear time [3].

A bipartite graph G = (V G , EG) is a 2-layer chain graph
if the vertex set V G can be partitioned into independent 
sets X , Y , Z so that there is no edge between X and Z , 
and the vertices can be ordered as X = {x1, x2, . . . , x|X |}, 
Y = {y1, y2, . . . , y|Y |}, and Z = {z1, z2, . . . , z|Z |} such that

• NG(x1) ⊆ NG(x2) ⊆ · · · ⊆ NG(x|X |),
• NG(z1) ⊆ NG(z3) ⊆ · · · ⊆ NG(z|Z |),

• N(X)
G (y1) ⊇ N(X)

G (y2) ⊇ · · · ⊇ N(X)
G (y|Y |), and

• N(Z)
G (y1) ⊆ N(Z)

G (y2) ⊆ · · · ⊆ N(Z)
G (y|Y |),

where N(X)
G (yi) = NG(yi) ∩ X and N(Z)

G (yi) = NG(yi) ∩ Z . 
We denote such a 2-layer graph by G = (X, Y , Z; EG). See 
Fig. 1.

Note that a partition and orderings in the definition of 
2-layer chain graphs above can be computed in polynomial 
time as follows. Given a 2-layer chain graph B = (P , Q ; E), 
we first guess which of P and Q is Y . Assume that we 
have guessed that Q = Y , and thus P = X ∪ Z . Now for any 
two vertices p and p′ in P check whether NB(p) ⊆ NB(p′)
or NB(p) ⊇ NB(p′) holds. If not, then neither {p, p′} ⊆ X
nor {p, p′} ⊆ Z can happen. Let R be the set of such pairs. 
Using a linear-time algorithm for 2-coloring, we can parti-
tion P into two sets X and Z in such a way that no pair in 

Fig. 1. A chain graph H = (U , V ; E H ) and a 2-layer chain graph G =
(X, Y , Z; EG ).

R is entirely included in X or in Z . Although this partition 
may not be unique, we can pick one arbitrarily. Next we 
can compute orderings on X and Z with respect to the in-
clusion ordering of neighborhoods. The ordering on Y is a 
linear extension of the intersection of two inclusion order-
ings ⊇ and ⊆ defined on N(X)

G (·) and N(Z)
G (·), respectively. 

This can be computed also in polynomial time.
Since they can be computed in polynomial time, we as-

sume in the following that chain graphs and 2-layer chain 
graphs are given with vertex partitions and vertex order-
ings defined above.

Using a characterization given by Sprague [8], Konagaya 
et al. [6] showed a reduction from the unsettled case to a 
simpler case.

Theorem 1 ([6]). If SGI is polynomial-time solvable when the 
base graphs are connected 2-layer chain graphs and the pattern 
graphs are connected chain graphs, then SGI is also polynomial-
time solvable when the base graphs are bipartite permutation 
graphs and the pattern graphs are chain graphs.

By the theorem above, we can focus on the case where 
the base graphs are connected 2-layer chain graphs. For 
this case, we will present a polynomial-time algorithm for 
solving SGI.

3. Finding a connected chain graph in a connected 
2-layer chain graph

Let G = (X, Y , Z; EG) be a connected 2-layer chain 
graph with X = {x1, . . . , x|X |}, Y = {y1, . . . , y|Y |}, and Z =
{z1, . . . , z|Z |}. Let H = (U , V ; E H ) be a connected chain 
graph with U = {u1, . . . , u|U |} and V = {v1, . . . , v |V |}.

Note that since both G and H are connected bipartite 
graphs, a subgraph-isomorphism η from H to G satisfies 
either η(U ) ⊆ Y or η(U ) ⊆ X ∪ Z . Also, η(U ) ⊆ Y implies 
η(V ) ⊆ X ∪ Z . In the rest of this section, we assume that 
we correctly guessed that η(U ) ⊆ Y and η(V ) ⊆ X ∪ Z
since we can perform the algorithm twice.

3.1. Guessing the used vertices in the base graph G

In this subsection, we show that the vertices of G used 
by a subgraph-isomorphism from H to G can be guessed 
from polynomially many candidates. First we show that 
vertices in Y can be chosen consecutively.

Lemma 2. If there is a subgraph-isomorphism η from H to G
with η(U ) ⊆ Y , then there is a subgraph-isomorphism η′ from 
H to G such that η′(U ) = {ys, ys+1, . . . , ys+|U |−1} for some s.
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