Hamiltonian decomposition of generalized recursive circulant graphs ${ }^{\text {NT}}$

Y-Chuang Chen ${ }^{\mathrm{a}, *}$, Tsung-Han Tsai ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Information Management, Minghsin University of Science and Technology, Xinfeng, Hsinchu 30401, Taiwan, ROC
${ }^{\text {b }}$ Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

ARTICLE INFO

Article history:

Received 27 June 2014
Received in revised form 2 February 2016
Accepted 6 April 2016
Available online 19 April 2016
Communicated by Tsan-sheng Hsu

Keywords:

Fault tolerance
Hamiltonian decomposition
Circulant graph
Recursive circulant graph
Generalized recursive circulant graph

Abstract

In 2012, Tang et al. [9] proposed a new class of graphs called generalized recursive circulant (GRC) graphs, which is an extension of recursive circulant graphs. GRC graphs have a more flexible structure than recursive circulant graphs, while retaining their attractive properties, such as degree, connectivity, diameter, and routing algorithm. In this paper, the Hamiltonian decomposition of some GRC graphs is discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network can be modeled as a graph, in which vertices represent processors or computers and edges represent connections or communication links. Throughout this paper, a network is represented as a loopless undirected graph G. For the graph theoretic definition and notation, we follow [4]. A graph G is a two-tuple (V, E), where V is a nonempty set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\}$. We say that V is the vertex set and E is the edge set. The degree of a vertex v, denoted by $\operatorname{deg}(v)$, is the number of edges incident with v. A graph G is called k-regular if $\operatorname{deg}(v)=k$ for every vertex $v \in V(G)$. Two vertices, u and v, of a graph G are adjacent if $(u, v) \in E(G)$. A simple path (abbreviated as path) is a sequence of adjacent edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots$,

[^0]$\left(v_{m-1}, v_{m}\right)$, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which all the vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ are distinct except possibly $v_{0}=v_{m}$. The path $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$ is called a cycle if $v_{0}=v_{m}$. A cycle that traverses every vertex exactly once is called a Hamiltonian cycle. A k-regular graph G is Hamiltonian decomposable if its edge set can be partitioned into $\frac{k}{2}$ edge-disjoint Hamiltonian cycles when k is even or $\frac{k-1}{2}$ edge-disjoint Hamiltonian cycles and a perfect matching when k is odd. The presence of edge-disjoint cycles in a network enhances fault tolerance, efficiency routing, broadcasting, etc. [5,6]. Hamiltonian decomposition of some graph families, such as complete k-uniform hypergraphs [2], 5-star graphs [6], and rectangular twisted toruses [7], is discussed extensively in the literature. Furthermore, Micheneau [8] and Biss [3] proved that recursive circulant graphs are Hamiltonian decomposable. The edgepancyclicity and the super-connected property of recursive circulant graphs are studied by Araki [1] and Tsai et al. [10], respectively.

The generalized recursive circulant (GRC) graph [9] is an extension of the recursive circulant graph, proposed by Tang et al. in 2012. GRC graphs have a more flexible struc-
ture than recursive circulant graphs in varying the number of vertices, and retain attractive properties of recursive circulant graphs, such as degree, connectivity, diameter, and routing algorithm. With the structural characteristics of GRC graphs, the embedding of a mesh is congestion-free and a torus is congestion-2 and dilation-2. Tang et al. conjectured that GRC graphs are Hamiltonian decomposable. In this paper, we focus on the Hamiltonian decomposition of some GRC graphs.

The definition of a generalized recursive circulant (GRC) graph is stated as follows.

Definition 1. (See [9].) A generalized recursive circulant (GRC) graph is denoted by $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$, where $h_{i} \geq 2$ for $1 \leq i \leq k$. Each vertex in the graph can be labeled as a k-tuple $v_{k} v_{k-1} \ldots v_{1}$ with $0 \leq v_{i} \leq h_{i}-1$ for $1 \leq i \leq k$, which is a mixed radix number representation. A vertex $v_{k} v_{k-1} \ldots v_{1}$ is adjacent to all of those vertices labeled by $v_{k}^{\prime} \ldots v_{i+1}^{\prime} v_{i}^{\prime} v_{i-1} \ldots v_{1}$ for $1 \leq i \leq k$ if $v_{k}^{\prime} \ldots v_{i+1}^{\prime} v_{i}^{\prime}$ is equal to $v_{k} \ldots v_{i+1} v_{i} \pm 1$, where the addition and subtraction in each dimension include carry and borrow.

The GRC graph $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ is $2 k$-regular and ($2 k-1$)-regular if $h_{k} \geq 3$ and $h_{k}=2$, respectively. Given a $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ while $k \geq 2$, let V_{i} denote the vertex set $\left\{v_{k} v_{k-1} \ldots v_{2} i \mid 0 \leq v_{j} \leq h_{j}-1\right\}$ for $0 \leq i \leq$ $h_{1}-1$. We use $G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ to denote the subgraph of $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ induced by V_{i}. Therefore, $V\left(G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)\right)=\cup_{i=0}^{h_{1}-1} V\left(G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)\right)$, and

$$
V\left(G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)\right) \cap V\left(G R_{j}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)\right)=\emptyset,
$$

for any $i \neq j$. Each induced subgraph $G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ is isomorphic to $G R\left(h_{k}, h_{k-1}, \ldots, h_{2}\right)$ for $0 \leq i \leq h_{1}-1$.

We also need some terms in $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$. For $h_{k}=2$, we define the edge set $X=\left\{\left(0 v_{k-1} v_{k-2} \ldots v_{1}\right.\right.$, $\left.1 v_{k-1} v_{k-2} \ldots v_{1}\right) \mid 0 \leq v_{i} \leq h_{i}-1$ for $\left.1 \leq i \leq k-1\right\}$, and $G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)=G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)-X$. Obviously, X is a perfect matching of $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$. For $h_{k} \geq 3$, we define $G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)=G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$. Moreover, in $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ (respectively, $G R^{*}\left(h_{k}\right.$, $\left.h_{k-1}, \ldots, h_{1}\right)$), a path is called a successive m-path of $G R\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ (respectively, $G R^{*}\left(h_{k}, h_{k-1} \ldots, h_{1}\right)$) if and only if it is labeled as $\left\langle v_{k} v_{k-1} \ldots v_{1}, v_{k} v_{k-1} \ldots v_{1}+\right.$ $\left.1, \ldots, v_{k} v_{k-1} \ldots v_{1}+m\right\rangle$. Similarly, in $G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ (respectively, $G R_{i}^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$), a path is called a successive m-path of $G R_{i}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ (respectively, $G R_{i}^{*}\left(h_{k}\right.$, $\left.h_{k-1}, \ldots, h_{1}\right)$) if and only if it is labeled as $\left\langle v_{k} v_{k-1} \ldots v_{1}\right.$, $\left.v_{k} v_{k-1} \ldots v_{1}+h_{1}, \ldots, v_{k} v_{k-1} \ldots v_{1}+m \times h_{1}\right\rangle$.

The relationship of circulant graphs, recursive circulant graphs, and GRC graphs is as the following:

recursive circulant graphs \subset GRC graphs

\subset circulant graphs

The rest of this paper is organized as follows. In Section 2, Hamiltonian decomposition of GRC graphs is discussed. In Section 3, we give concluding remarks.

Fig. 1. $h_{1}=2$.

Fig. 2. Hamiltonian decomposition of $G R^{*}(2,3,2)$.

2. Hamiltonian decomposition of GRC graphs

Lemmas 1-4 provide some schemes for constructing edge-disjoint Hamiltonian cycles of GRC graphs recursively. Note that in Lemmas 2-4, the successive 1-paths and 2-paths of $H_{j}^{i}\left(H_{i}\right.$, respectively) for all i and j are vertexdisjoint.

For $h_{k}=2, G R\left(h_{k}\right)$ is a clique with two vertices and can be decomposed into a perfect matching. For $h_{k} \geq 3, G R\left(h_{k}\right)$ is a cycle of length h_{k} and is Hamiltonian decomposable such that every edge $\left(v_{k}, v_{k}+1\right)$ for $0 \leq v_{k} \leq h_{k}-1$ is on the Hamiltonian cycle. Thus, we have the following lemma.

Lemma 1. If $h_{k}=2$, then $G R\left(h_{k}\right)$ can be decomposed into a perfect matching. If $h_{k} \geq 3$, then $G R\left(h_{k}\right)$ is a Hamiltonian cycle, denoted by H_{k}, such that a successive 2-path $\left\langle v_{k}, v_{k}+1, v_{k}+\right.$ $2\rangle \in H_{k}$.

Lemma 2. Let $k \geq 2$ and $h_{1}=2$ in $G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$. For $0 \leq i \leq h_{1}-1$, assume that each $G R_{i}^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ can be decomposed into k^{\prime} ($k^{\prime}=k-2$ if $h_{k}=2$ and $k^{\prime}=k-1$ if $h_{k} \geq 3$) disjoint Hamiltonian cycles, denoted by $H_{0}^{i}, H_{1}^{i}, \ldots, H_{k^{\prime}-1}^{i}$, such that a successive 1-path $\left\langle v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} i, v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} i+\right.$ $\left.h_{1}\right\rangle \in H_{j}^{i}$ for $0 \leq j \leq k^{\prime}-1$. Then, $G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ can be decomposed into $k^{\prime}+1$ disjoint Hamiltonian cycles, denoted by $H_{0}, H_{1}, \ldots, H_{k^{\prime}}$, such that a successive 1-path $\left\langle v_{k} v_{k-1} \ldots v_{1}, v_{k} v_{k-1} \ldots v_{1}+1\right\rangle \in H_{i}$ for $0 \leq i \leq k^{\prime}$.

Proof. For $0 \leq i \leq k^{\prime}-1$, let $H_{i}=H_{i}^{0} \cup H_{i}^{1} \cup\left\{\left(v_{k}^{i} v_{k-1}^{i} \cdots\right.\right.$ $\left.v_{2}^{i} 0, v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0+1\right),\left(v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0+h_{1}, v_{k}^{i} v_{k-1}^{i} \ldots\right.$ $\left.\left.v_{2}^{i} 0+\left(h_{1}+1\right)\right)\right\}-\left\{\left(v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0, v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0+h_{1}\right)\right.$, $\left.\left(v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0+1, v_{k}^{i} v_{k-1}^{i} \ldots v_{2}^{i} 0+\left(h_{1}+1\right)\right)\right\}$. See Fig. 1 for illustration. Finally, let $H_{k^{\prime}}=G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)-$ $\cup_{i=0}^{k^{\prime}-1} H_{i}$. Therefore, $G R^{*}\left(h_{k}, h_{k-1}, \ldots, h_{1}\right)$ can be decom-

https://daneshyari.com/en/article/428478

Download Persian Version:

https://daneshyari.com/article/428478

Daneshyari.com

[^0]: 4. This work was supported in part by the Ministry of Science and Technology of the Republic of China under Contract MOST 104-2221-E-159002.

 * Corresponding author.

 E-mail address: cardy@must.edu.tw (Y-C. Chen).

