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We study the Online Circle Packing Problem where we need to pack circles that arrive 
online in square bins with the objective to minimize the number of bins used. An online 
algorithm is said to have bounded space if at any given time, only a constant number of 
bins are open, circles are packed only in open bins and once a bin is closed it cannot be 
reopened. In particular, we present a 2.4394-competitive bounded space algorithm for this 
problem and a 2.2920 lower bound on the competitive ratio of any online bounded space 
algorithm for this problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the Online Circle Packing Problem, one has infinitely 
many square bins and receives a list of circles (given by its 
radii) in an online fashion. When a circle arrives, it must 
be packed in a bin, without intersecting other circles or the 
borders of the bin. Also, after packing the circle, it cannot 
be moved to another bin or another position in the bin. 
The objective is to minimize the number of bins used.

We say that an online algorithm A has an asymp-
totic competitive ratio of α if, for every instance I , 
A(I) ≤ α OPT(I) + C where A(I) is the value of the solu-
tion produced by algorithm A, OPT(I) is the value of an 
optimal offline solution and C is a constant. In this paper 
we present an online algorithm with asymptotic compet-
itive ratio at most 2.4394. This algorithm has the nice 
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property that it has bounded space, that is, at any time 
there is at most a constant number of open bins. After a 
bin is closed, it is not opened anymore and, hence, does 
not receive new circles. Also, we present a 2.2920 lower 
bound on the competitive ratio of any online bounded 
space algorithm for this problem.

Previous works The book of Szabo et al. [10] presents 
many results regarding finding the maximum common ra-
dius of k circles that can be packed in a unit square 
for several values of k along with other related prob-
lems. The website maintained by Specht [9] collects even 
more results, not only regarding the packing of circles in 
a unit square but also the packing of circles in a circle, 
in an isosceles right triangle, in a semicircle, in a circular 
quadrant and other problems. Some applications of circle 
packing includes obtaining a maximal coverage of radio 
towers in a geographical region [10] and construct photo 
collages [12]. A review on circle packing problems and 
methodologies can be found in [5].

For the offline circle packing problem, there is an 
asymptotic polynomial time approximation scheme by 
Miyazawa et al. [7] when we can augment the bin in 
one direction which can also be adapted to the circle 
strip packing problem. Note that, as shown by Demaine 
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Fig. 1. In (a), a division of a bin in h-bins of type (i, 0). In (b), a subdivision of an h-bin of type (i, k) and in (c) a subdivision of a t-bin of type (i, k) in 
h-bins and t-bins of type (i, k + 1) for C = 3.

et al. [1], it is NP-hard to decide if a set of circles can be 
packed into a square bin.

This online problem is already studied in the litera-
ture when the objects to be packed are squares, rectan-
gles and hyperboxes. Epstein and Van Stee [4] developed 
a bounded space online algorithm for the d-dimensional 
online hypercube packing, extended this algorithm for the 
d-dimensional online hyperbox packing, for the variable-
sized d-dimensional bin packing problem and for the on-
line bin packing with resource augmentation. Later on, 
Epstein and Van Stee [3] presented numerical lower and 
upper bounds for d-dimensional online bounded space hy-
percube for d ∈ {2, . . . , 7}. Epstein [2] presented bounded 
and unbounded space algorithms for the two-dimensional 
online rectangle packing with orthogonal rotations.

2. An algorithm for Online Circle Packing

We start by presenting an algorithm for the Online Cir-
cle Packing Problem. For simplicity, we consider that a bin 
is a square of side length 1. The algorithm divides the cir-
cles into large circles and small circles. Given some positive 
integer constant M , a circle is said to be large if its radius 
is bigger than 1/M and, otherwise, it is said to be small.

For every positive integer i, let ρ∗
i be the largest value 

such that i circles of radius ρ∗
i can be packed in a bin. For 

example, ρ∗
1 = 0.5 since we can pack a circle of radius 0.5

in a bin but we cannot pack a circle of radius 0.5 + ε in 
a bin for any ε > 0. As only some few values of ρ∗

i are 
currently known, we will use the best known lower bound 
on the value of unknown ρ∗

i , by ρi , obtained from the lit-
erature [9]. For algorithms that can compute ρi , we refer 
to [10]. Let K be such that ρK > 1/M ≥ ρK+1. We will say 
that a large circle is of type 1 ≤ i < K if its radius is at 
most ρi and larger than ρi+1 and of type K if its radius is 
at most ρK and larger than 1/M . We pack large circles of 
the same type together, packing at most i circles of type i
in the same bin.

Let C > 1 be a positive integer constant that is a mul-
tiple of 3. We say that a small circle of radius r is of 
type i (for M ≤ i < C M), subtype k (or, simply that r is of 
type (i, k)) if 1/(i + 1) < Ckr ≤ 1/i where k is the largest 
integer such that Ckr ≤ 1/M . Small circles are packed us-
ing a recursive hexagonal packing defined later.

At a given time, the algorithm maintains at most K bins 
opened to pack large circles and (C − 1)M bins opened to 
pack small circles, and thus, it has bounded space. Recall 
that the area of a hexagon of side length � is 3

√
3�2/2. 

Also, the radius of the inscribed circle of a hexagon of side 

length � is 
√

3�/2. That is, it is possible to pack a circle of 
radius r in a hexagon of side length 2r/

√
3.

The algorithm generates three types of sub-bins. For 
1 ≤ i ≤ K , a c-bin of type i is a circular bin of radius ρi (it 
is used only for large circles). For M ≤ i < C M and k ≥ 0, 
an h-bin of type (i, k) is a hexagonal bin of side 2/(

√
3 Cki)

and a t-bin of type (i, k) is a trapezoidal bin created by 
cutting an h-bin of type (i, k) in half with a cut parallel 
to two of its sides. Notice that h-bins and t-bins are only 
used to pack small circles. Also, the algorithm will divide 
a bin into h-bins of type (i, 0). This is done by selecting a 
hexagonal tiling of a bin where there is a hexagon on the 
left bottom part of the bin with two of its sides parallel to 
the bottom of the bin and by removing the hexagons that 
are not properly contained in the bin. See Fig. 1a. The algo-
rithm also divides h-bins and t-bins in additional sub-bins. 
In Lemma 2.1, we show how this can be done without los-
ing any area of the original sub-bin.

Lemma 2.1. For M ≤ i < C M and k ≥ 0, if C is a multiple of 3
then it is possible to partition an h-bin (or a t-bin) of type (i, k)

in h-bins and t-bins of type (i, k + 1).

Proof. Consider an h-bin of type (i, k) scaled so that its 
side length is C and embedded in the plane with its center 
at the origin, with two sides parallel to the x-axis. Notice 
that, after the scaling, an h-bin of type (i, k + 1) has side 
length 1. Finally, consider the hexagonal packing of the 
plane where the hexagons has side length 1 and have two 
sides parallel to the x-axis and, also, there is a hexagon 
with its leftmost point at (0, 0).

Notice that, because C is a multiple of 3, we have that 
the leftmost point of the h-bin (at (−C, 0)) is the leftmost 
point of a hexagon. Thus, the segment which goes from 
the h-bins’ leftmost point to the leftmost point of its top 
(at (−C/2, 

√
3 C/2)), which has an angle of 60 degrees, 

either cuts hexagons in half or cuts between hexagons. 
Again, as C is a multiple of 3, it cuts a hexagon exactly 
in half at leftmost point of the h-bin’s top, ending at the 
hexagon rightmost point of its top. Now, by reflection sym-
metry over the x-axis, the same is true for the segment 
which goes from the h-bins’ leftmost point to the leftmost 
point of its base (at (−C/2, −√

3 C/2)). Finally, by rota-
tional symmetry over 120 degrees, the same is true for all 
edges of the h-bin. See Fig. 1b.

For a t-bin of type (i, k), the result follows from this 
observation along with the fact that we will also split 
the hexagons with y-coordinate 0 horizontally in half. See 
Fig. 1c. �
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