
Information Processing Letters 116 (2016) 356–360

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Complexity of atoms, combinatorially

Szabolcs Iván 1

University of Szeged, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 April 2014
Received in revised form 6 January 2016
Accepted 7 January 2016
Available online 12 January 2016
Communicated by A. Muscholl

Keywords:
Regular language
Atoms of a language
Syntactic left-congruence classes
Automata theory
Formal languages

Atoms of a (regular) language L were introduced by Brzozowski and Tamm in 2011 as 
intersections of complemented and uncomplemented quotients of L. They derived tight 
upper bounds on the complexity of atoms in 2012. In 2014, Brzozowski and Davies 
characterized the regular languages meeting these bounds. To achieve these results, they 
used the so-called “átomaton” of a language, introduced by Brzozowski and Tamm in 2011.
In this note we give an alternative proof of their characterization, via a purely combinatorial 
approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The state complexity of a regular language L is the 
number of states of its minimal automaton. An atom of 
a language is a non-empty intersection of its quotients, 
some of which may be complemented. Brzozowski and 
Tamm introduced atoms in [6] and found tight upper 
bounds for their state complexity in [7], carefully ana-
lyzing a particular nondeterministic finite automaton, the 
so-called “átomaton” of a regular language also introduced 
in [6].

A language is defined to be maximally atomic in [5] if it 
has the maximal number of atoms possible and each of the 
individual atoms has the maximal possible state complex-
ity. In [4], Brzozowski and Davies showed that maximal 
syntactic complexity implies maximal atomicity and in [5]
they gave necessary and sufficient conditions for a lan-
guage to be maximally atomic.
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In this paper we introduce another tool which we call 
the “disjoint power square automaton” of a regular lan-
guage, and give a self-contained, purely combinatorial and 
automata-theoretic proof of their characterization.

2. Notation

A semigroup (S, ·) is a set S equipped with a binary as-
sociative operation ·. We usually omit the sign · and write 
st for s · t . A monoid is a semigroup (S, ·) having a neu-
tral element 1 satisfying s1 = 1s = s for each s ∈ S . Given 
a finite nonempty set Q , two particular semigroups are 
TQ consisting of all the transformations of Q (i.e. func-
tions Q → Q with function composition as product) and 
its subsemigroup PQ consisting of the permutations of Q . 
In order to ease notation in the automata theoretic part, 
we write function application in diagrammatic order, i.e. 
if p ∈ Q and f ∈ TQ , then pf stands for the value to 
which f maps p, and for f , g ∈ TQ their product is f g de-
fined as p( f g) = (pf )g for each p. Also, when f ∈ TQ and 
S ⊆ Q , then S f stands for the set {sf : s ∈ S}. The rank of a 
transformation f ∈ TQ is the cardinality of its image Q f ; 
transformations of rank n are called permutations, while all 
other transformations are called singular transformations. 
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When n ≥ 1 is an integer, then Tn stands for the transfor-
mation semigroup T{1,...,n} .

An alphabet is a finite nonempty set � of symbols. 
A �-word is a finite sequence w = a1a2 . . .an with each 
ai being in �. For n = 0 we get the empty word, denoted ε. 
The set �∗ of all words forms a monoid with the operation 
being (con)catenation, or simply product of words given 
by a1 . . .an · b1 . . .bk = a1 . . .anb1 . . .bk . In this monoid, ε is 
the neutral element. The semigroup �+ = �∗ − {ε} is the 
semigroup of nonempty words.

A language (over �) is an arbitrary subset of �∗ . A finite 
automaton is a system M = (Q , �, δ, q0, F ) with Q being 
the finite nonempty set of states, � being the input alpha-
bet, δ : Q × � → Q is the transition function, q0 ∈ Q is 
the start state and F ⊆ Q is the set of final states. Given 
M , the monoid �∗ acts on Q from the right as q ·M ε = q
and q ·M ua = δ(q ·M u, a) for each q ∈ Q , u ∈ �∗ and a ∈ �. 
When M is clear from the context, we omit the subscript 
and, in most cases, also the period and write only qw for 
q ·M w . Then, each word w induces a function Q → Q , 
denoted by w M , defined as q �→ qw . The transformation 
semigroup of M is T (M) = {w M : w ∈ �+} – it is clear 
that uM v M = (uv)M so T (M) is indeed a semigroup. Most 
of the time, when M is clear, we omit the subscript also 
here and identify w with w M . Another semigroup associ-
ated to M is that of its permutation group P(M) = {w M :
w ∈ �∗, Q w = Q }. The language recognized by M is the 
language L(M) = {w : q0 w ∈ F }. A language is called reg-
ular if it can be recognized by a finite automaton. It is 
well-known that for each regular language there exists a 
minimal automaton, unique up to isomorphism having the 
least number of states among all the automata recogniz-
ing L.

A state q of an automaton is reachable from a state p if 
pw = q for some word w . States that are reachable from 
q0 are simply called reachable states. A sink is a non-final 
state p /∈ F such that pa = p for each a ∈ � (thus, pw = p
for each word w as well). Two states p, q are called distin-
guishable if there exists a word w such that exactly one of 
the states pw and qw belongs to F . It is known that M is 
minimal iff each pair p �= q of its states is distinguishable 
and all its states are reachable. When M = (Q , �, δ, q0, F )

is an automaton and q ∈ Q , then Mq stands for the au-
tomaton (Q , �, δ, q, F ) and Lq for the language recognized 
by Mq . A state q is empty if so is Lq . In a minimal automa-
ton, there is at most one empty state which is then a sink. 
For a subset S ⊆ Q of states, let L S stand for ∪q∈S Lq .

Given a (regular) language L ⊆ �∗ , a well-known asso-
ciated congruence on words is its syntactic right congruence
∼L defined as

x ∼L y ⇔ (∀z : xz ∈ L ⇔ yz ∈ L).

It is known that the minimal automaton of a regular 
language L is isomorphic to (�∗/∼L, �, δL, ε/∼L, L/∼L)

where δL(x/∼L, a) = xa/∼L .
Similarly,2 one can define the syntactic left congruence 

L∼ of a language defined dually as

2 Though the notion of syntactic left congruence seems to be natural, 
we have not found any of its appearance in the literature in this form. 

x L∼ y ⇔ (∀z : zx ∈ L ⇔ zy ∈ L).

The reversal of a word w = a1 . . .an is the word w R =
an . . .a1, and the reversal of the language L is LR = {w R :
w ∈ L}. Then obviously, x L∼ y if and only if xR ∼LR yR , 
since zx ∈ L holds iff xR zR ∈ LR . Hence, classes of the syn-
tactic left congruence are precisely the reversals of the 
syntactic right congruence classes of LR .

3. Atoms of a regular language

Let L ⊆ �∗ be a regular language and M = (Q , �, δ,
q0, F ) be its minimal automaton. Let n stand for |Q |, the 
state complexity of L. An atom of L, as defined in [7], is a 
nonempty language of the form

A S =
⋂
q∈S

Lq ∩
⋂
q/∈S

Lq,

for some S ⊆ Q . Here X stands for complementation with 
respect to �∗ , i.e. �∗ − X . It is clear that L has at most 2n

atoms.
That is, a word w is in A S if qw ∈ F iff q ∈ S , or equiv-

alently, if S w ⊆ F and S w ⊆ F . (For X ⊆ Q , X denotes 
Q − X .) An immediate consequence of this characterization 
is that the atoms of a language are precisely the classes 
of its syntactic left congruence. Indeed, first observe that 
each word u belongs to precisely one atom A S – to which 
S = {q : qu ∈ F } = {q0 w : wu ∈ L}. Hence, u and v belong to 
the same atom A S iff S = {q0 w : wu ∈ L} = {q0 w : w v ∈ L}
iff u L∼ v . Thus, atoms are in a one-to-one correspondence 
with the states of the minimal automaton of LR , in par-
ticular the number of atoms of L coincides with the state 
complexity of LR .

In [5,7], the authors achieved results on properties of 
atoms such as the number and state complexity of indi-
vidual atoms, via studying the “átomaton” of L, which is 
a nondeterministic automaton, actually being isomorphic 
to the reversal of the determinized reversal of M . In this 
paper we suggest another way to study atoms and reprove 
the characterization of the so-called maximally atomic lan-
guages.

To achieve this, we define a modified power set au-
tomaton, the disjoint power square (DPS) automaton
DPS(M) = (Q ′, �, �, p, F ′) of M as follows:

• Q ′ ⊆ (
P (Q ) × P (Q )

) ∪ {⊥} consists of the state pairs 
(S, T ) for S, T ⊆ Q with S ∩ T = ∅, and a sink 
state ⊥.

• �(⊥, a) = ⊥ and

�((S, T ),a) =
{

(Sa, T a) if Sa ∩ T a = ∅
⊥ otherwise

.

• p is an arbitrary state.
• F ′ = P (F ) × P (F ), that is, {(S, T ) : S ⊆ F , T ⊆ F }.

However, as it turns out, atoms are precisely the classes of this equiva-
lence relation.
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