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We consider the problem of detecting and locating modifications in signed data to ensure 
partial data integrity. We assume that the data is divided into n blocks (not necessarily 
of the same size) and that a threshold d is given for the maximum amount of modified 
blocks that the scheme can support. We propose efficient algorithms for signature and 
verification steps which provide a reasonably compact signature size, for controlled sizes 
of d with respect to n. For instance, for fixed d the standard signature size gets multiplied 
by a factor of O (logn), while allowing the identification of up to d modified blocks. Our 
scheme is based on nonadaptive combinatorial group testing and cover-free families.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Digital signature schemes can detect if modifications 
were done in a signed document, but do not offer in-
formation on where exactly those modifications occurred. 
In this context, even a single bit change would invalidate 
the whole document. In the present paper, we provide a 
general Modification Location Signature Scheme which de-
termines which parts of the document were modified, thus 
ensuring partial data integrity.

Partial data integrity is useful in several scenarios. First, 
we may need to ensure the integrity of specific parts of 
a document. For example, in fillable forms the owner may 
need to assure that the document is official, while some 
parts are expected to be modified. Second, in a data foren-
sics investigation of a crime, the investigator could have 
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more clues on who is the attacker by knowing what ex-
actly was modified [2]. Third, assuring that part of the data 
is intact can improve the efficiency of a computer system. 
For example, in a large database, the modification of some 
of its records would not invalidate the whole database, 
avoiding total disruption of service.

One can also see partial data integrity as a solution 
for guaranteeing privacy protection, where the extrac-
tion of selected portions of a signed document is to 
be shared with another party (content extraction signa-
ture [7], redactable signature [3]). Our signature scheme 
capable of locating modifications can be used in this ap-
plication by substituting the removed parts by “blank” 
symbols. The original signature can be used to guarantee 
the integrity of the non-removed parts.

The Modification Location Signature Scheme (MLSS) 
proposed in this paper employs combinatorial group test-
ing to determine which blocks of a document contain 
modifications and which ones are intact. This work is 
closely related to the work of Zaverucha and Stinson [8]
who propose the use of group testing to identify modified 
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documents in batch. However, while in [8] group testing 
is used on the verifier’s end to speed up the batch veri-
fication algorithm, in our approach it is used both at the 
signer’s and verifier’s end, which greatly improves the sig-
nature size over the trivial idea of treating each block of a 
document as an independent signed document. This triv-
ial idea would require n signatures for a document divided 
into n blocks, which would not be efficient, while for the 
cases of interest here we would have the size of a signa-
ture multiplied by a factor of O (log n) instead (see Theo-
rem 1 and the discussion that follows it). While MLSS is 
applicable to any type of document (text, pictures, videos 
or a mix), the type of document may influence the way 
one divides it (see Section 3.4).

Definition of the problem and related work in digital 
signatures and group testing are presented in Section 2; 
the algorithms for the proposed Modification Location Sig-
nature Scheme and analysis are provided in Section 3; con-
clusions are given in Section 4.

2. Definition of the problem and related work

2.1. Digital signatures

Following a general definition [8], a signature scheme is 
specified by algorithms (Gen, Sign, Verify). Gen(k) receives 
a security parameter k and outputs a pair of keys (sk, pk), 
a secret key used for signing and a public key used for 
verification, respectively. Sign(sk, m) outputs a signature σ
on the message m using the secret key sk . Verify(pk, σ , m)

outputs 1, using the public key pk , if σ is a valid signature 
of m, and 0 otherwise.

We propose a general digital signature scheme for sign-
ing a document divided into blocks providing, in the case 
of modifications on the document after signing, the extra 
capability of locating which blocks have been modified.

Definition 1. Modification Location Signature Scheme
(MLSS): Let B = (B1, . . . , Bn) be a document divided 
into n blocks. MLSS-Gen(k) receives a security parame-
ter k and outputs a pair of keys (sk, pk). MLSS-Sign(sk, B)

outputs a signature σ on B using the secret key sk . 
MLSS-Verify(pk, σ , B) outputs 1 if, using the public key 
pk , σ is a valid signature of B , it outputs 0 if σ has been 
modified or is not authentic, and otherwise (B has been 
modified) outputs extra information on the location of the 
modifications in B .

In this paper, we present an approach, which is based 
on combinatorial group testing, to solve the challenge 
stated in Definition 1. Zaverucha and Stinson [8] observe 
that finding invalid signatures in a batch is a group testing 
problem, and propose the use of group testing methods 
to improve the efficiency of the batch verification algo-
rithm. In [8], by exploring the best known group testing 
algorithms, they show how to run t signature verifica-
tions to verify a batch of n signed documents, where t is 
substantially smaller than n; in their case, adaptive and 
nonadaptive group testing can be used. We use a simi-
lar idea to improve the verification algorithm, but we also 
suggest applying group testing at the signer’s end in order 

to minimize the signature size. We produce t digests, each 
one involving a subset of the n blocks of the document 
(t much smaller than n). This tuple of digests is signed and 
sent with the document, allowing the verifier to determine 
the blocks that were modified. This approach requires non-
adaptive group testing, since the digests must be prepared 
at the signer’s end independently of where modifications 
may occur. In this case, we need an upper bound d on the 
number of modified blocks; this threshold value d needs 
to be chosen carefully to keep control on the size t .

The presented method is not specific for asymmetric 
key encryption since one can choose any digital signature 
algorithm as Sign and Verify. In this paper, our presenta-
tion is based on public key digital signatures.

2.2. Group testing

The purpose of group testing is to identify d defective 
elements from a set of n elements pooled into t groups 
where t < n. The groups are tested, instead of all elements 
individually. For a subset of elements (pool), if at least one 
of the elements is defective, we return the result for the 
test as a “fail”; if no element is defective we return the re-
sult of the test as a “pass”. In adaptive group testing, the 
results of the previous tests are used to determine sub-
sequent tests; in nonadaptive group testing, all the tests 
are specified ahead of time, which allows them to be run 
in parallel (see the book by Du and Hwang [1]). In our 
method, we need to use nonadaptive group testing, since 
the organization of blocks into groups must be done at the 
signer’s end, and thus before the modifications (“defects”) 
are introduced. In this case, the most effective way to de-
tect up to d defectives is to use a cover-free family (CFF).

Definition 2. A d-cover-free family, denoted d-CFF(t, n) is a 
t ×n binary matrix M with n ≥ d + 1, such that for any set 
of column indexes C with |C | = d and column c /∈ C , the 
following property holds: there exists a row i satisfying 
Mi,c = 1 and Mi, j = 0 for all j ∈ C .

We form the tests according to the rows of matrix M , 
i.e. for each 1 ≤ i ≤ t , test i consists of exactly the items 
j for which Mi, j = 1. The properties of CFFs assure that if 
the number of defectives is at most d then it is enough to 
determine the non-defective items from the passing tests. 
Then, we can conclude that all other items are defective.

Given d and n, we wish to find a d-CFF(t, n) for the 
smallest possible t , which we call t(d, n). We mention a 
few useful explicit constructions found in the literature. 
When d = 1, we can use Sperner theorem [6] to show that 
the smallest number of tests possible is t(1, n) = min{t :( t
�t/2�

) ≥ n}. We observe that as n → ∞, t(1, n) ∼ log2 n. 
The top-left of Fig. 1 gives an example with n = 6 and 
t = 4. For arbitrary d and n, we consider the construc-
tions of Porat and Rothschild [5] (with t ≤ (d + 1)2 ln n) 
and Pastuszak et al. [4] (with t ≤ (d +1)

√
n). Some of these 

constructions are surveyed in [8]. We note that for specific 
small d one can find more efficient constructions than the 
general ones listed here; for example, for d = 2 a smaller 
t can be achieved (see [1], Section 7.5). This more specific 
analysis is out of the scope of this paper.
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