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A new graph parameter, called tree-coritivity, is introduced in this paper. A decycling-cut 
is a vertex-cut whose removal results in an acyclic graph. Let ω(G) be the number of 
connected components of a graph G . The tree-coritivity of a graph G is the maximum 
value of ω(G − S∗) −|S∗|, where S∗ takes over all decycling-cuts of G . It is shown that this 
parameter can be used to measure the vulnerability of a graph. We prove that the problem 
of computing the tree-coritivity of a graph is NP-complete. Moreover, we figure out the 
bounds of tree-coritivity of graphs, give a way to compute the tree-coritivity of the join 
graph, and determine the exact value of tree-coritivities for some special classes of graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The resistance of a graph (or a network) to opera-
tions, such as deletion of vertices or edges is one impor-
tant property to reflect the reliability and efficiency of the 
graph. Thus far, there have appeared many literatures that 
investigated the vulnerability of a graph [16,3,10,8]. Gen-
erally, in an analysis of the vulnerability of a graph (or 
a network) to disruption, two important quantities (there 
may be others) are (1) the number of elements that are 
not functioning, (2) the number of remaining connected 
subnetworks. Based on the quantities, many graph param-
eters have been proposed for measuring the vulnerability 
of graphs. The vertex connectivity (or edge connectivity) 
is probably the earliest and also the most studied pa-
rameter [15,4,17,18,9]. However, in the early 1970s it was 
found that the connectivity only partly reflects the ability 
of graphs to retain certain degrees of connectedness after 
operations such as the removal of vertices or edges [1]. 
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Therefore, a number of new parameters were introduced 
and studied, such as toughness [11,6,21], scattering num-
ber [19] (or coritivity [22]), integrity [1], tenacity [13,12], 
feedback number [14,7] (or decycling number [2]), and 
rupture degree [20]. In contrast to vertex (edge) connec-
tivity, these measures consider not only the difficulty to 
break down the network but also the damage that has 
been caused.

Of all these parameters, we are more interested in the 
coritivity for its lively definitions and wide applications in 
real world, such as the problems in reliable communication 
networks and neural networks together with social psy-
chology [23]. However, we still see much room for improv-
ing this parameter. First, coritivity involves only quantities 
(1) and (2). Nevertheless, in addition to these two quanti-
ties, there are also other quantities that may influence the 
vulnerability of a graph, e.g. (3) the number of cycles and 
their distribution in a graph. Naturally, coritivity shows its 
limitation in measuring the vulnerability of graphs due to 
missing quantity (3). Indeed, there exist many graphs that 
their connectedness is apparently different but they have 
the same coritivity. In other words, coritivity is incapable 
of distinguishing the connectedness of some graphs with 
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different structures. Second, coritivity is defined only for 
connected graphs, and thus graphs that are unconnected 
cannot be measured by it.

Based on the above two aspects, a more appropri-
ate parameter refining coritivity is necessary. Such a pa-
rameter should not only involve the quantity (3) besides 
(1) and (2), but also be feasible for general graphs in-
cluding unconnected ones. In this paper, we introduce 
such a parameter called tree-coritivity and show that tree-
coritivity enables us to distinguish the connectedness of 
some graphs, which cannot be distinguished by coritivity. 
Moreover, we figure out the bounds of tree-coritivity of 
graphs, give a way to compute the tree-coritivity of the 
join graph by characterizing the relation between the tree-
coritivities of any two graphs and the join of them, and 
determine the exact value of tree-coritivities for some spe-
cial classes of graphs.

Another contribution of this work is the analysis of the 
complexity of computing the tree-coritivity of a graph. Our 
result shows that this problem is NP-complete. Since the 
complexity for determining the coritivity of graphs has not 
been studied yet, our result on tree-coritivity may shed a 
light on the complexity of former.

2. Preliminaries

In what follow, we only consider undirected graphs 
without multiple edges or loops. For a graph G , we de-
note by V (G) and E(G) the set of vertices and edges of G , 
respectively. For a vertex v ∈ V (G), NG(v) is the set of 
all vertices adjacent to v , and dG (v) = |NG(v)| is the de-
gree of v . The maximum degree and minimum degree of 
G is denoted by �(G) and δ(G), respectively. For brevity, 
V (G), E(G), �(G), δ(G) are simplified by V , E, �, δ, re-
spectively. Let H be a subgraph of G , we say H is a span-
ning subgraph of G if V (H) = V (G). For a subset V ′ of 
V (G), we denote by E(V ′) the set of all edges of G with 
both endvertices in V ′ . The graph G[V ′], whose vertex set 
is V ′ and edge set is E(V ′), is the subgraph of G induced
by V ′ . The graph G[V − V ′] is simply written as G − V ′ . 
Analogously, for E ′ ⊆ E , the graph G[E ′], whose vertex set 
is the set of all the endvertices of E ′ and edge set is E ′ , 
is the subgraph of G induced by E ′ . The graph G + E ′ is 
the graph obtained by adding the edge set E ′ to E(G). For 
a graph G , we denote by ω(G) the number of connected 
components of G . Please refer to [5] for more notations of 
graph theory.

Recall that a vertex cut of a graph G is a V ′ ⊆ V (G)

such that G − V ′ is disconnected. We use C(G) to denote 
the set of all the vertex cuts of G . A vertex cut S is said 
to be a k-cut if |S| = k. If G is not a complete graph, the 
connectivity κ(G) of G is the minimum value of k over 
all k-cuts of G . Otherwise, we define the connectivity of a 
complete graph of order n to be n − 1. Thus, κ(G) = 0 if G
is either trivial or disconnected.

A feedback vertex set of a graph G is a set of vertices V ′
whose removal leaves a graph without cycles. However, in 
order to measure the vulnerability of G , we hope that V ′ is 
vertex cut, i.e. G − V ′ is disconnected. We refer to a feed-
back vertex set V ′ as a decycling-cut of G if V ′ is a vertex 

cut, and denote by T (G) the set of all the decycling-cuts 
of G .

Definition 1 (Core and coritivity). Let G be a connected 
graph, and n ≥ 4. The coritivity of G is defined as

h(G) = max{ω(G − S) − |S| : S ∈ C(G)},
where ω(G − S) is the number of connected components 
of G . A set of vertices S∗ with h(G) = ω(G − S∗) − |S∗| is 
said to be a core of G .

In view of the consideration that the number of cy-
cles and their distribution in a graph can strongly affect 
the connectedness of the graph, we naturally introduce the 
concepts of tree-core and tree-coritivity, which generalize 
the concept of core and coritivity.

Definition 2 (Tree-core and tree-coritivity). Let G be a graph 
with at least one pair of distinct nonadjacent vertices. The 
tree-coritivity of G is defined as

ht(G) = max{ω(G − S) − |S| : S ∈ T (G)}.
A set of vertices S∗

t with ht(G) = ω(G − S∗
t ) − |S∗

t | is said 
to be a tree-core of G . In addition, since Kn contains no 
vertex cut, we define that the tree-coritivity of Kn is 2 − n, 
and each subset with n − 1 vertices of V (Kn) is a tree-core 
of Kn .

By the definition of tree-coritivity, it is not difficult to 
check that ht(Pm) = 1 and ht(Cn) = 0 for m ≥ 3 and n ≥ 4; 
Let G be a graph on at least 3 vertices. Then G contains a 
cycle if ht(G) ≤ 0; For any connected graph G with order 
n(≥ 4), it has ht(G) ≤ h(G).

As we analysed in Introduction, tree-coritivity can be 
used to further measure the vulnerability of graphs with 
the same coritivity. To see this, it is sufficient to show the 
following observation.

Observation. There are graphs which share the same cori-
tivity but have distinct tree-coritivity.

We prove this observation by constructing a concrete 
example: Let Pn = v1 v2 · · · vn be a path on n vertices; Add 
a vertex u1 on one side of Pn , and connect u1 with ev-
ery vi for i = 1, 2, · · · , n; And add another vertex u2 on 
the other side of Pn , and connect u1 with each vi for 
i = 1, 2, · · · , n − 1. The resulting graph is denoted by P ′

n; 
Fig. 1 shows the graph P ′

5.
For an integer n ≥ 4, let Cn be a cycle on n vertices and 

P ′
n be the graph defined above. Then, it is easy to see that 

h(Cn) = h(P ′
n) = 0, while ht(Cn) = 0 and ht(P ′

n) = −1. In 
addition, these two graphs apparently have different con-
nectedness according to their structures. Thus, for these 
graphs, it can be seen that tree-coritivity is a better param-
eter than coritivity for distinguishing their connectedness.

We first introduce two simple and useful results as fol-
lows.

Lemma 2.1. Let H be a spanning subgraph of G. Then ht(G) ≤
ht(H).
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